33D7-32-12-11
2 7 SEP 1989

L e .
PR T :
o il

lications
Manual

DISTRIBUTICN STATEMENT - Distribution authorized to U $ Government agencies only for adwinistrative or operational
wse. [effactiva date s date of this manuall. Other requests for ths docuinent must Le referved to San Anone

AC/MEDT, Ketly AFB TX T8241-5000,

THIS MATERIEL MAY BE REPRODUCED BY CR FOR THE U § GOVERMMENT PURSUANT TO THE COPYRIGHT
LICENSE UMDER THE iDFAR) CLAUSE AT 52.227-T013 05 MAY 1987

HANDLING AND DESTRUCTION NOTICE - Comply with distrbution statement and destroy by any methol thal viu
.prevent disclosure of contents or reconstruction of the document.

P/N 813840 FLU K E

€1988, John Fluke Mig. Co., Inc.
All rights reserved. Litho in L.S.A.

®

1 FEBRUARY 1988

LIMITED WARRANTY

John Fluke Mfg. Co., Inc. (Fluke) warrants your 9100/9105A to be free from
defects in material and workmanship under normal use and service for 90 days
from the date of shipment. Software and firmware products are provided "AS
iS." We do not warrant that software or firmware products will be error free,
operated without interruption or that all errors will be corrected. This warranty
extends to you if you are the original purchaser and does not apply to fuses,
batteries or any product which, in our sole opinion, has been subject to misuse,
alteration or abnormal conditions of operation or handling.

_ To obtain warranty service, contact a Fluke Service Center or send the .
) product, with the descript_ic’indof the difficulty, postage prepaid, to the nearest
Fluke Service Center. Fluke assumes no risk for damage in transit.

Fluke will, at our option, repair or replace the defective product free of
charge. However, il we determine that the failure was caused by misuse,
alteration, or abnormal condition of operation or handling, you will be billed for
the repair. The repaired product will be returned to you, transportation prepaid.

THIS WARRANTY IS EXCLUSIVE AND IS INLIEU OF ALL OTHER WARRAN-
TIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE OR USE. FLUKE WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, INGIDENTAL, OR CONSEQUENTIAL DAMAGES CR
LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.

e

R 1990 \L>

Section Title ' Page
WREI® BM 12, xvil
IPOAUGHION ... 1-1
1.1, ORGANIZATION OF THIS MANUAL....... .. . 1-1
1.2 PREPARING FOR TESTING AND

TROUBLESHOOTING.........coovromnr 1-2
1.3 WHERE TO BEGIN.......ooovorrere 1-5
Overview of Testing and Troubleshooting................... 2-1
2.1. EMULATIVE TESTING............oovee 2-2
2.2 NODE CHARACTERIZATION................. 2-6
2.3. STIMULUS AND MEASUREMENT CAPABILITIES........ 2-7
23.1. Pod Capabilties...............coccoervenr 29
232, Probe Capabilities (With The Clock Module)............... 2-9
2.3.3. VO Module Capabilities............................ 2-10
2.4 TESTING AND TROUBLESHOOTING WITH

THE9100A/9105A........covcevvvreccroeesoooo 2-11
Developing Procedures and Programs............................. 3-1
3.1. UNDERSTANDING THE UUT........ccoovo 3-1
3.2 PARTITIONING THE UUT .. 3-1

Section

Title Page
3.21. An Example of Partitioning...........cceei e veveriivicnenene. 3-2
3.22. The Advantage of Partitioning......0.....coccvvineeieeen. 3-6
3.3. PROGRAM DEVELOPMENT SEQUENCE..................... 3-6
3.4. STIMULUS PROGRAMS AND LEARNED
RESPONSES. ...t e s 3-8
3.4.1. Rules for Stimulus Programs.........cccoceevceeieeereneccene, 3-10
3.4.2. The Flow of Stimulus Across the DUT ... 3-11.
3.43. Stimulus Program Planning............cceeviveeeieeecine o, 3-12
3.44. Suggestions about Stimulus Programs..................... 318
3.5. FUNCTIONAL TESTS.....ocecieeeee ettt 3-21
3.5.1. Programmed Functional Tests.......cocceeeivevvcenreviraenne 3-24
3.5.2. Programmed Functional Test Examples..................... 3-26
3.5.3. Keystroke Functional Tests.......occevevcccieeeccccieeee, 3-27
Functional Block Test and Troubleshooting Examples............ 4-1
41. MICROPROCESSOR BUS FUNCTIONAL BLOCK......... 4-3
411 Test Access to the Microprocessor Bus...................... 4-3
41.2 Considerations for Testing and Troubleshooting........ 4-5
413. Microprocessor Bus Examplecocccveevvvveiniennas 4-10
414, Keystroke Functional Test........c..ecovuiiiveiinniiniesreennns 4-10
415 Programmed Functional Test.........ccccevvveiinineiinineen. 4-14
4.1.6 Stimulus Programs and ReSponses..........ccovvvvvenenan. 417
4.1.7 Summary of Complete Solution for
MiCroprocessor BUS.........c.ccocvmviinineeses s 4-31
4.2 ROM FUNCTIONAL BLOCK.......cccoct et 4-33
4.2.1. Introduction 10 ROM..........coovveiecnvrreccec e 4-33
422, Considerations for Testing and Troubleshooting........ 4-33
4.23. ROM Example.......cccoceieirenneceinririeeeeece e ees 4-39
424, Keystroke Functional Test. ... s, 4-39
4.25, Programmed Functional Test.........c..cocecvviererennneee. 4-44
4.2.6. Stimulus Programs and Responses...........cccceveuee.... 4-46
427. Summary of Complete Solution for ROM.................... 4-57
43. RAM FUNCTIONAL BLOCK.........coie v vecrecee e 4-59
4.341. Introduction 10 RAM ... e e e 4-59
4.3.2. Considerations for Testing and Troubleshooting........ 4-59
433, RAM EXample.......cooooviiiciceiienin et 4-63
4.3.4. Keystroke Functional Test...........ccocvvveeriverninine e 4-63
4.3.5. Programmed Functional Test...........coeevieeicciie s 4-66

Vi

AT

Section Title Page

4.3.6. Stimulus Programs and ReSpONSes.........ce.......vvvon... 4-67
43.7. Summary of Complete Solution for RAM.................... 4-74
4.4, DYNAMIC RAM TIMING FUNCTIONAL BLOCK............ 4-75
4.4.1. Introduction to Dynamic RAM Timing Circuits............ 4-75
442, Considerations for Testing and Troubleshooting........ 4-75
4.4.3. Dynamic RAM Timing Circuit Example.........c............ 4-79
444, Keystroke FUNCHONAl TeSL.........cocvveeeeeeerieeeeeeen 4-83
445, Programmed Functional Test..........oocoveveeevrvrvvennnn, 4-88
4.46. Stimulus Programs and Responses...............o..v......: . 4-88
4.4.7. Summary of Complete Solution for Dynamic

RAM TiMiNG......oerrrie et 4-113
45. PARALLEL INPUT/OUTPUT FUNCTIONAL BLOCK...... 4-115
451, Introduction to Parallel I/O...............ccoveevevereerrererrnn. 4-115
452, Considerations for Testing and Troubleshooting........ 4-115
453 Parallel HO EXampPIg.........ccoveeeeereeeereeoeeeeeveissss 4-118
454, Keystroke FUNCional TeSt........ccoovvveereevvveeneris 4-118
455, Programmed Funclional Test.........cccocvcvveeeveevervnnnn. 4-124
45.6. Stimulus Programs and Responses.............c.c............ 4-126
457 Summary of Complete Solution for Parallel I/O........... 4-149
4.6, SERIAL INPUT/OUTPUT FUNCTIONAL BLOCK............ 4-151
4.6.1, Introduction to Serial VO............c..ovvveveseereeevs 4-151
4.6.2. Considerations for Testing and Troubleshooting........ 4-151
4.6.3. Serial 1fO EXample..........oceueeevevieeceeseee e, -4-155
4.64. Keystroke Functional Test...........oocvevererronreeoons 4-156
4.6.5. Programmed Functional Test.........ccoouvmvvreeevrersesnn 4-160
4.6.6. Stimulus Programs and Responses............co..o........... 4-163
46.7. Summary of Complete Solution for Serial /O........... 4-176
4.7, VIDEQ QUTPUT FUNCTIONAL BLOCKoeoeovov . 4-177
4.71. Introduction fo Video Output Circuits......................... 4-177
4.7.2. Considerations for Testing and Troubleshooting........ 4-177
473 Video Qulput Circuit EXample.......oooeovveceoveeroer, 4-180
474, Keystroke Functional Test.......c.ocooooeeeeovio 4-181
4.75. Programmed Functional Test...........cocover oo, 4-186
4.7.6. Stimulus Programs and Responses............................ 4-187
4.77. Summary of Complete Solution for Video Qutput....... 4-202

Section

4.8,

4.8.1.
4.8.2.
4.8.3.
4.8.4.
4.8.5.
4.8.6.
48.7.

4.9

4.9.1.
492
4.9.3.
494
4.9.5.
4.9.6.
4.9.7.

4.10.

4.10.1.
4.10.2.
4.10.3.
4.104.
4.105.
4.10.8.
4.10.7.

B B ST NP SRV S W g Y
NEIFNISN

NN NN
-‘._l‘_l.—l.-—l.
MMM
pPOM

Vi

Title Page
VIDEQ CONTROL FUNCTIONAL BLOCK...................... 4-203
Introduction to Video Control Circuits............c.cou...... 4-203
Considerations for Testing and Troubleshooting........ 4-205
Video Control Circuit Example..........ocoeeeeerveeeneeen, 4-206
Keystroke Functional Test.............cocovveeviriieecrinan, 4-208
Programmed Functional Test.........cooooveeeveeeveeneenee, 4-218
Stimulus Programs and Responses...........ccocccccvueen.. 4-216.
Summary of Complete Solution for Video Control...... 4-229
VIDEO RAM FUNCTIONAL BLOCK........coooecovvmernnnn 4-231
Introduction to Video RAM.........ccocevovvvviriieee i 4-231
Considerations for Testing and Troubleshooting........ 4-231
Video RAM Circuit Example..........ccccoeevvveniiveceeenn e, 4-233
Keystroke Functional Test..........c.occcooiriii e, 4-234
Programmed Functional Test.......c.coeecv s e 4-238
Stimulus Programs and Responses.............coeceeveeenan. 4-238
Summary of Complete Solution for Video RAM.......... 4-242
BUS BUFFER FUNCTIONAL BLOCK......cocoeieeecierann 4-243
Buses and Bus Buffers............cccce i 4-243
Considerations for Testing and Troubleshootrng 4-243
Bus Buffer Example.........c.occoieiee e 4-250
Keystroke Functional Test..........ccovevverivvemicrenevcnienen. 4-251
Programmed Functional Test........c.cccccceveviiiniieeennn. 4-262
Stimulus Programs and Responses...........cccc.cvvvoe.. 4-263
Summary of Complete Solution for Bus Buffer........... 4-272
ADDRESS DECODE FUNCTIONAL BLOGCK.................. 4-273
Introduction to Address Decode Circuits.....................4-273
Considerations for Testing and Troubleshooting........ 4-273
Address Decode Circuit Example..........ccccoeeeveeeen.n. 4-276
Keystroke Functional Test........ccoeevovevvivineciieieeenn 4-277
Programmed Functional Test.........c.o.ocoovvviiene e 4-282
Stimuius Programs and Responses...........cveveeene.... 4-283
Summary of Complete Solution for
Address DECOGE.......ccoeeveverierree e 4-289
CLOCK AND RESET FUNCTIONAL BLOCK.................. 4-21
Introduction to Clock and Reset Circuits..................... 4-291
Considerations for Testing and Troubleshooting........ 4-291
Clock and Reset Example.........c.cooovvvveiiiiiciccen 4-293
Keystroke Functional Test..........ccooeovniiiiiiiiioeene 4-294

T

Section Title Page
4125 Programmed Functional Test.........ccooviveeivecrerrecrienn. 4-300
4126 Stimulus Programs and ReSponses........c.c.ee.cvveeeneen, 4-301
4.12.7 Summary of Complete Solution for Clock and Reset.. 4-312
4.13. INTERRUPT CIRCUIT FUNCTIONAL BLOCK................ 4-313
4.13.1. Introduction to Interrupt CircURS......cooovviveie e, 4-313
4.13.2. Considerations for Testing and Troubleshooting........ 4-313
4,13.3. Interrupt Circuit EXample......oocve v, 4-316
4.13.4. Keystroke Functional Test........cccccccee e e, 4-316
4.13.5. Programmed Functional Test..........ccoeee v ivviinniae 4-322
4.13.6. Stimulus Programs and Responses...............c....ou...... 4-322
4.13.7. Summary of Complete Solution for Interrupt Circuit.... 4-329
4.14. READY CIRCUIT FUNCTIONAL BLOCK...........covvrenn. 4-331
4141, Infroduction to Ready Circuits........ccoveeeecereerieenrian. 4-331
4142, Considerations for Testing and Troubleshooting........ 4-331
4.14.3. Ready Circuit Example.........cccocoee e 4-334
4.14.4, Keystroke Functional Test......c.cccoviieee e, 4-335
4.14.6. Programmed Functional Test..........ccovveiieeiniieinine 4-348
4.14.7. Stimulus Programs and Responses............cccuvveue..... 4-349
4,148, Summary of Complete Solution for Ready Circuit....... 4-378
415, OTHER FUNCTIONAL BLOCKS AND CIRCUITS.......... 4-379
4151 Walchdog TIMErS ..o 4-379
4.15.2 FOrCING LIiN8S ..ottt 4-379
4153 Breaking Feedback LOOPS.......cccooveeriiierieericiiiieeene. 4-380
4154 Visual and Acoustic Interfaces.........ccevvvvreecv e, 4-380
4.155 In-Circuit Component Tests.........cccocceoevvviniieeeneenen. 4-381

5. UUT Go/No-Go Functional Tests..........c.cccceevveeeeecriccie e, 5-1
51. PROGRAMMED GO/NO-GO FUNCTIONAL TESTING.. 5-1
5.2, CREATING A PROGRAMMED GO/NO-GO

FUNGTIONAL TESTeoovrieiiiccmvncie st 5-1
53. EVALUATING TEST EFFECTIVENESS.........occoceveee.. 5-3
54. EXECUTING UUT SELF-TESTS.....ccoocoieecer v 5-7
55.

i

Section

viii

Title Page

Identifying a Faulty Functional BIOCK..........cc.cceeoeeeeeiicicn e, 61
6.1. STRATEGY OF DIAGNOSTIC PROGRAMS..........ccooue 6-3
6.2. IMPLEMENTING THE STRATEGY FOR

DIAGNOSTIC PROGRAMS.........cco vt v, 6-6
6.3. DIAGNOSIS USING FAULT CONDITION HANDLERS.. 6-8
8.3.1. What are Fault Condition Handlers?.........coovvevevine 6-8
6.3.2. Using Fault Condition Handlers........ccccceveceecernen, 6-9
6.3.3. A Diagnostic Test EXample ..., 6-9
6.4, DIAGNOSTIC PROGRAM FOR THE

DEMO/TRAINER UUT...oiiiiiiicieice e 6-11
6.5. FUNCTIONAL BLOCK TESTS FOR THE

DEMO/TRAINER UUT DIAGNOSTIC PROGRAM.......... 6-17
Troubleshooting........cococooiic e v 7-1
7.1. UNGUIDED FAULT ISOLATION (UFT}....coviiiiiiiaeenn, 71
7.2 GUIDED FAULT ISOLATION (GFI).....cccorivrrrriniienieiis 7-2
7.3. STIMULUS PROGRAMS.......ccco e veiie 7-2
7.4, STIMULUS PROGRAM RESPONSES........cc.ccoeeeeveeee, 7-4
7.4.1. Learning Responsas From a Known-Good UUT........ 7-4
7.4.2. CRC SIgnatires. ... s s e 7-5
7.4.3. Other Characterizations......cc.ccoeecv v sees 7-7
7.4.4, Calibration of the YO Module and Probe.................... 7-8
7.45. Adjusting Sync Timing....cccceevccvvin v 7-9
7.5. THE UUT DESCRIPTION.....ootviiiiieeec e 7-11
7.5.1. Reference Designator List (REFLIST)...c.cccovecevcvieeens 7-11
752 Part Library (Part Descriptions).......ccccccvvvmnvnivninenn, 7-12
7.5.3. Node List (Net List or Wire List)........ceooooveereeie, 7-12
7.5.4, Bus-Master Pins in a Node List.........ccovevveei v 7-13
7.6.5. Choice of Backtracing Path...........c.ccoo oo 7-14
7.6. SUMMARY OF GFI COVERAGE........cccceiv v, 717
7.7. FAULT CONDITION EXERCISERS..........ocoeveivereenn. 7-23
7.8. REPAIR AFTER TROUBLESHOOTING.........ccooeviviinan, 7-24
GlOSSANY ...t e et et s s 8-1

Section Title Page

Appendices

A. Demo/Trainer UUT Reflist..............cccoovveimnnieniecieercen e A-1
B. Demo/Trainer UUT Nodelist.............cccovverrinirnincinreer e B-1
C. Subprograms for Functional Test and Stimulus Programs..... C-1
D. Demo/Trainer UUT Schematics...........ccoeveveee oo, D-1 _
Index

(This page is intentionally blank.)

Figure Title Page
1-1: Recommended Programming Sequence..............cccoeeooreeennn... 1-4
2-1 Testing, Troubleshooting, and Repair.........ccoovoiviiiieceen. 2-3
2-2 Emulative Testing With the 9100A/9105A.................. . 2-5
23 9100A/9105A Stimulus and Measurement Capability................ 2-8
310 Demo/Trainer UUT.......eeeeeooecoeeooeooo 3-3
3-2: Demo/Trainer UUT Functional BIOCKS ..o 35
3-3: Building-Block Programming..............oueceoroeoosoeeooo 3-7
3-4: Functional Test for Nodes (Level L OSSOSO 3-9
3-5. Example of Stimulus Program Planning Figure ..., 3-15
3-6: Parts of a Stimulus Program...........coeoeooino 3-18
3-7: Functional Tests for Functional Blocks (Level 2}....ccoveeereinnn. 3-22
3-8 Functional Test EIBMeNtS............oooooveerovvvroooso 3-23
3-9: Example of Keystroke Functional Test Figure.........ocooveennenn, 3-29
4-1: Conditions Reported by the BUS TEST......ooooovoooo 4-6
4-2: Microprocessor Bus FUnctonal Test............................... . 4-13
4-3: Microprocessor Bus Stimulus Program Planning........................ 4-19
4-4: Stimulus Program (ADDR_OUT).......ooovreorooo 4-20
4-5: Response File (ADDR_OUT).......cccoomovrccerrrr 4-22
4-6: Stimulus Program (DATA_OUT)......oovomvoo 4-24
4-7. Response File (DATA_OUT)it 4-26
4-8: Stimulus Program (CTRL_OUTH)............ e e e s es 4-28
4-9; Response File (CTRL_OUT)..c...ooveoovveeeeoooeoooo 4-30

Xi

Figure

Bobobobob bbb
S I Qi Qi '

NegRWR2O

-h-.h-l-“-
[P gy
cew

4-21;
4-22:
4-23:
4-24:

4-25 :
4-26 :
4-27:
4-28.
4-29 :
4-30:
4-31;
4-32:
4-33:
4-34:
4-35:
4-36:
4-37:
4-38:
4-39:
4-40:
4-41:
4-42:
4-43;

4-44:
4-45;
4-46;
4-47:
4-48:

Xii

Title Page

Typical ROM BIOCK ...t et 4-34
Conditions Reported by ROM Test........ccooviiie 4-36
ROM Functional Test.........ccccoeeiv e e 4-43
ROM Stimulus Program Planning...........ccccoeeeenieiesscvinsseeemsnnen 4-49
Stimulus Program (ROMO_DATA).......ccooeiinicc i 4-50
Response File (ROMO_DATA)...c..coooiiieiccre et 4-52
Stimulus Program (ROM1_DATA}......cooei i e 4-53 .
Response File (ROM1_DATA).......ccooiinivrerniesnn e 4-55
Typical RAM BIOCK.........cccoociiiieen et e 4-60
RAM Test Failure Information..............ccooovvii e, 4-62
RAM FUunCtional Test.......ocoe e as et sse s 4-65
RAM Stimulus Program Planning..............ccoveeienneieicn v 4-69
Stimulus Program (RAM_DATA)......ccccivieiiie e 4-70
Response File (RAM_DATA). ... 4-72
Inititalization Program (RAM_FILL)........ccccvvriinnnd e 4-73
Dynamic RAM Read CycCles ... e, 4-76
Dynamic RAM Read/Write Timing........c.ovoeeiniesv e 4-80
RAM Refresh Timing.....ccovvermv v sserscererns s seressrs e snsren e 4-82
Dynamic RAM Timing Functional Test..............ccoccenieciiin i 4-87
Dynamic RAM Timing Stimulus Program Planning..................... 4-91
Stimulus Program (CAS_STIM).....oooo e 4-92
Response File (CAS_STIM) ... e 494
Stimulus Program (RAS_STIM}.....cocoviieniee e 4-95
Response File (RAS_STIM) oo 4-97
Stimulus Program {(RAMSELECT 1) vennenrines 498
Response File (RAMSELECT1).....cccc o 4-100
Stimulus Program (RAMSELECT2) ... 4101
Response File (RAMSELECT2)................... e 4-103
Stimulus Program (REFSH_ADDR).........ccooiiinccien e 4-104
Response File (REFSH_ADDR).........ooviieiii e 4-106
Stimulus Program (REFSH_TIME}.......ccoonmiiireee e 4-107
Response File (REFSH_TIME)......c..cocciiiiiiicie e e e 4-109
Stimulus Program (REFSH_US6)..........coooveee e 4-110
Response File (REFSH_USB).......c.cocciv i seiinaam 4-112
Parallel 11O Functional Test (Paft A)......ooociii e 4-121
Parallel /O Functional Test (Part B).........c........... TR 4-123
Parallel /0 Stimulus Program Planning.........c.ccoevieievniiininnins 4-129
Stimulus Program (KEY_ 1), 4-130

Response Filg {(KEY_ 1) e iensrns s sneescae s 4-132

Figure

4-49:
4-50:
4-51:
4-52:
4-53:
4-54:
4-55;
4-56:
4-57:
4-58;
4-59;

4-60:

4-70:

4-73:

4-75;
4-76;
4-77:
4-78:
4-79:;
4-80:
4-81;

4-82.
4-83:
4-84:
4-85:
4-36:
4-87:

Title Page

Stimulus Program (KEY_2).........ccccoeuiieeeeeeeeevesreseeeveeeenn 4-133
Response File (KEY_2)..........ccooiviieocensee oo et 4-135
Stimulus Program (KEY_3)..........coovveeiee oot 4-136
Response File (KEY_3).........ccooeevveeennns e 4-138
Stimulus Program (KEY_4)....................... Aot e et 4-139
Response File (KEY_4).....coccevevvevcevvann., e et e s 4-141
Stimulus Program (PIA_DATAY........cccoovmmreeereeeeeee oo, 4-142
Response File (PIA_DATA)cooveeerieeeseeeeceenen e 4-144
Stimulus Program (PIA_LEDS)..........ccooveeeeiiieeeeeresesreesenaeenan 4-145
Response File (PIA_LEDS)........cccoooceuioiinnieeeeeee e, 4-148
Initialization Program (PIA_INIT).........cccoovvveinsrceeseeee e, 4-148
Typical Serial ¥O Port, With Support Circuitry............ocooveveen..... 4-152
Serial I/O Functional Test........ooueeeevvvviiicee e, 4-159
Serial /0 Stimulus Program Planning..........cccoeveeevvvervevineeensnn. 4-165
Stimulus Program (RS232_DATA)......c.cocvcvevcireeieeeroeereceerssanan 4-166
Response File (RS232_DATA)......cccvveiciseeeeeeeeeervenen e eroree e 4-168
Stimulus Program (RS232_LVL)......ccvoveeveveseeeeeeeevereeeeeenennnn 4-169
Response File (RS232_LVL)........ooovveeeeeeeeeeeeeeee et 4-171
Stimulus Program (TTL_LVL).......ccoeeeereeeeeeeeeeeeeeesee e enen s 4-172
Response File {TTL_LVL).....cvieices e esreve s e 4-174
Initialization Program (RS232_INIT)coverveeeee oo 4-175
Typical Video Controller CirGUit...........cocoeeeveeeeevreesir e eeen e 4-178
Video Output Functional Test.........ccvceivvviriveeieeeee s 4-185
Video Qutput Stimulus Program Planning..........c.cocovveeeeevceeeare, 4-189
Stimuius Program (VIDEO_FREQ)........cc..cocoveeeeeeeeeeeveriorearnrann, 4-190
Response File (VIDEO_FREQ)........ccooieioeeereceeeeere e s, 4-191
Stimulus Program (VIDEO_OUT).........ooccoviveeoeoeeseeeeee e, 4-192
Response File (VIDEC_OUT) ..o 4-184
Stimulus Program (VIDEQ_SCAND........ccovuvtieeeeeereere e 4-195
Response File (VIDEQ_SCAN).....cocccooe oo 4-197
Initialization Program (VIDEO_INIT)....ccovoverivnineecer s, 4-199
Initialization Program (VIDEO_FIL1)...cv.ocoveviiiriceeeeeeiee e 4-200
Initialization Program (VIDEO_FIL2).......oooeeeeeeeeeeeeeeoeeen, 4-201
Video Display Controller THNNG.......ccocooeiiiiieeeee e 4-204
Video Control Functional Block Timing...........ocoveveeeeeevevereenn. 4-207
Video Control Functional Test (Part A)..ocevevveeirieieeeceerirann 4-211
~ Video Control Functional Test (Part B).............coveeeverveveereenieneann 4-213
Video Control Functional Test (Part C)...oveevvvevvoeeeeieeeeeeeen, 4-215
Video Control Stimulus Program Pianning..........co...coeeveveeunnene, 4-219

xiii

4-94;
4-95:

4-96:
4-97.
4-98.
4-89:
4-100:
4-101;
4-102;
4-103;
4-104.

4-105:;
4-106;
4-107;
4-108:
4-109:

4-110:
4-111:
a-112:
4-113:
4-114:
4-115:
4-116:
4-117:
4-118:

4-119:;
4-120:
4-121:
4-122:
4-123;

Xiv

Title Page
Stimulus Program (VIDEO_DATA)........ccoeinrnrerierccrnriecnnrenienes 4-220
Response File (VIDEO_DATA)..........ooveriinren e 4-222
Stimulus Program (VIDEQ_RDY)......ccovrmveceeei et 4-223
Response File (VIDEOC_RDY)...cocvveninicceerecenrrerieereneeereenminenene 4-224
Stimulus Program (LEVELS})......c...covei s snee s 4-226
Response File (LEVELS) ... e 4-227
Video RAM Functional Test.......cvreiinccicrnennc, e 4-237
Video RAM Stimulus Program Planning........c.oewerrevense v enceeas 4-241
Bus Buffer Functional Test (Part A)..........ccocceiniiciricniincecnens 4-255
Bus Buffer Functional Test (Part B)..........cccccoveviccniicenenneens 4-257
Bus Buffer Functional Test (Part C)......ocoovveecv e, 4-259
Bus Buffer Functional Test (Part D). 4-261
Bus Buffer Stimulus Program Planning..........cevevvveevoveeeceeenen 4-265
Stimulus Program {CTRL_QUT2).......ooiiic e 4-266
Response File (CTRL_OUT2)......coiiiicinnoiccomminines 4-268
Stimulus Program (CTRL_OUT3).....ovciiviriieien e 4-269
Response File (CTRL_OUT3} ..o 4-271
Typical Address Decode Functional Block.........ccoccoovivniivicnns 4-274
Address Decode Functional Test.........ccovivcimiin 4-281
Address Decode Stimulus Program Planning............o.oeeeis 4-285
Stimulus Program (DECODE).........cocconiniiiniinir e e 4-286
Response File (DECODE).......cccciv e 4-288
Clock and Reset Functional Test (Part A).........cccovevinrivienceen 4-297
Clock and Reset Functional Test (Pat B)......ccocoeeveiviiiiecinen, 4-299
Clock and Reset Stimulus Program Planning............cccocveveeee 4-303
Stimulus Program (RESET_HIGH).........ccooorriirccinneenie e 4-304
Response File (RESET_HIGH) ..o e 4-306
Stimulus Program (RESET_LOW).......cciviincinine 4-307
Response File (RESET_LOW) ..o 4-309
Stimulus Program (FREQUENCY) ..o 4-310
Response File (FREQUENCY)..........ooriivieniriccennere e 4-311
Typical Interrupt CirCUIL......covie s 4-314
Interrupt Circuit Functional Test......ccccvvvinenin 4-321
fnterrupt Circuit Stimulus Program Planning.............cciiinn, 4-325
Stimulus Program (INTERRUPT).....cocevve v 4-326
Response File (INTERRUPT}.....cccvi e 4-328

T

PO QUG

NWNNNN @
qhw@N

1 Typical Ready CirCUIL.........cc.ouvvuereeersieeeeceee e eee e 4-332
: Ready Circuit Functional Test (Part A).........cococeevemeevreeorn, 4-341
: Ready Circuit Functional Test (Part B)........ccc.ecvvevreevvrerersnnn 4-343
: Ready Circuit Functional Test (Part C).........ccoooeevvevroooen, 4-345
: Ready Circuit Functional Test (Part D).........cccoeeveeeeeveereeeeersrns 4-347
: Ready Circuit Stimulus Program Planning.............cooeveerivevnnn 4-353
» Stimulus Program (READY _1).....c.ovoeieeeeeeeeeeeee e 4-354
: Response File (READY_1)......cccooiiioiiiieieeecee oo 4-357
o Stimulus Program (READY_2).....c.ovveeeeeeeeeeeeeeee oo 4-358
: Response File (READY_2).........ooceovimuireeeeeeeoeeeeeeeeeeoeon, 4-361

. Stimulus Program (READY _3).......c.oovmrovereereeeveene JES 4-362
: Response File (READY_3).....couocirioeer oo, 4-365
o Stimulus Program (READY _4).........ccooveereeeeeeeeeoeeeeeo, 4-366
. Response File (READY _4)........ccoooooereeeeeeseeeeeeeeeeeee 4-369
. Stimulus Program (READY_5).........c.oooveeeereeveceeeeeesore, 4-370
: Response File (READY _5).....c..coovooieeeeeeeeeeeeeee oo, 4-373
: Stimulus Program (READY_B).......ccvoceerveeereeeeeeeseeer oo, 4-374
: Response File (READY _Bl.......c.oucuieeeeierieceeeees oo venan 4-377
UUT Go/No-Go Functional Testing (Level 3).......ccoeeevvvevvnnn.. 5-2
GO/NO-GO TSt SEQUENCE.........veveivierieccrrereeeeeeesssees s e s s, 5-6
Demo/Trainer UUT Go/NO-GO TeSt.uuoovoeereceeeeeeeveneceeen 5-7
Go/No-Go Test for Demo/Trainer UUT ..o, 5-8
Diagnostic Programs (Level 4)..........ccovocoeecooneceeoeeeoeeeeean, 6-2
Inputs to Functional BIOCKS............eeuiveeeneeenevecsreees e s 6-4
Identifying a Faulty Functional BIOGK.............ccooovveeeeeeeeeseoeia, 6-7
Testing for Start and Stop Stability...........cccvvveeovvecseeeee, 7-8
Synchronization-Pulse Delay Mechanism..........c..o.ccooevevvvvennn.... 7-10
Direction-Control EXample............c.c.oiieeecrveeeneeeeeereeeer oo 7-15
Statistical Summary Display for a UUT.......ocooeevveeeeeeeervren, 7-20
Pin Coverage Display 1or 8 UUT..........ccveevereeoeeseeeeeeeeeseneia 7-22

Xv

Xvi

(This page is intentionally blank.)

T

P
.,
.

——

Getting
Started

Automated
Operations
Manual

Technical
User's
Manual

Applications
Manual

Programmer’s
Manual

TL
Reference
Manual

Where Am ?

S—
—

You

A description of the parts of the
9100A/9105A, what they do, how to
connect them, and how to power up.

How to run pre-programmed
test or troubleshooting
procedures.

How to use the 9100A/9105A
keypad to test and troubleshoot your
Unit Under Test (UUT).

How to design test or troubleshooting
procedures for your Unit Under Test

(UUT}).

How to use the programming station
with the 9100A to create automated test
or troubleshooting procedures.

A description of all TL/1 commands
arranged in alphabetical order for
quick reference.

xvii

xviil

(This page is intentionally blank.)

ST

Section 1
Introduction

ORGANIZATION OF THIS MANUAL 1.1,

This manual provides an organized approach to testing and
troubleshooting a UUT (Unit Under Test) with the
9100A/9105A. The intended reader is someone who will be
writing test programs or test procedures for use with the
9100A/9105A.

Additional information on the various parts of the 9100A/9105A
system is available in the Getting Started booklet. More
information about using the operator's keypad for testing and
troubleshooting is available in the Technical Users's Manual.
And more information on programming the 9100A/9105A is
available in the Programmer’s Manual and in the TL/] Reference
Manual.

This manual is organized into three major parts:

Sections 1 to 3 give an overview of the capabilities of the
9100A/9105A and the process of developing functional tests and

automated troubleshooting procedures.

Section 4 describes some typical functional blocks for a
microprocessor-based UUT. For each typical functional block,

1-1

you will find a summary of things to consider for testing and
troubleshooting, a procedure for using the operator's keypad of
the 9100A/9105A for functional testing, a 9100A/9105A
programmed functional test, and a set of stimulus programs.

NOTE

Each of the functional blocks described in Section 4
are parts of a real UUT, the Fluke Demol/Trainer. It
is not necessary that you have the DemolTrainer
UUT to use this manual, but you may wish to
purchase the DemolTrainer from Fluke so you can
try out the example procedures and programs.

Sections 5 to 7 show you how to build on the block functional
tests to develop functional tests for your whole UUT and how to
develop automated troubleshooting procedures using Guided
Fault Isolation (GFI).

PREPARING FOR TESTING AND TROUBLESHOOTING 1.2

1-2

The 9100A/9105A is both a testing and a troubleshooting
system. As a test station, it determines whether functional
blocks of digital circuitry pass or fail. As a troubleshooting
station, it determines which nodes or circuit connections are
faulty.

The 9100A/9105A has many built-in functions which are useful
for functional testing, stimulation of nodes, and measurement of
node or component behavior. In addition, the 9100A has a
powerful programming language, called TL/1, that is used to
customize the capabilities of the 9100A/9105A to match the
testing and troubleshooting requirements for your UUT.

The Programmer's Interface option of the 9100A is used to enter
UUT information and to create programs that become the
building blocks for automated testing and troubleshooting. This
interface also provides an automated process for collecting and
storing node responses from a known-good UUT. When the
9100A/9105A is used for testing and troubleshooting,

LT

P

measurements on a node are compared with these stored,
known-good node responses to determine whether the measured
node response is good or bad.

The 9100A is easily programmed. The operator's keypad and
display allow you to explore the operation of your UUT by
pressing keys on the keypad. Then, as you develop successful
test and troubleshooting procedures, you can put these
procedures into TL/1 programs to automate the process. Or, if
you prefer, you can write the TL/1 programs directly and then
check their operation with the debugger built into the 9100A.

The 9100A/9105A is very flexible; it can be used with several
different levels of investment in programming. As you increase
the level of programming, you increase the degree of automation
and the ease of testing and troubleshooting. Five typical levels
of programming effort are summarized below and are also
shown graphically in Figure 1-1,

* No programming effort: Use the keys of the operator's
keypad to initiate testing and troubleshooting actions. This
level is appropriate for testing or troubleshooting one-of-a-
kind UUTs, where investment in programmed testing and
troubleshooting is not cost-effective. It is also valuable for
keystroke testing and troubleshooting prior to the
completion of programmed testing and troubleshooting.
Keystroke testing and troubleshooting requires a skilled
technician operator.

* Level I Programming: Create stimulus programs that
cause predictable activity at a node and characterize that
node activity on a known-good UUT. You may choose to
create the node list and the reference designator list at this
level also. If you do so, you will be able to backtrace from
a bad node to the fault which causes it. You do this by
pressing the GFI key on the operator's keypad and
specifying the failing node as the starting point.

® Level 2 Programming: Create functional tests for each
functional block of your UUT. These tests determine
whether the functional block passes or fails. Some block

1-4

LEVEL OF PROGRAMMING

Level 1 1

+ Stimulus Programs for Nodes

+ Learned Node Responses
from Known-Good UUT
= Node List and Reference
Designator List (Both Optional)
. ______________________________________

Level 2

Functionat Tests of
Entire Functional Blocks

Level 3 I
Go/No-Go Test
fer the Entire UUT
Level 4 I

Go/No-Go Test
for the Entira UUT,
with Fault Isolation

to the Block Level

TESTING AND TROUBLESHOOTING

CAPABILITY AT THIS LEVEL

+Can Determine Whether
Nodes Are Good or Bad

=Can Backtvace from a Bad
Node to the Fault {If the Node
List and Reference Designator
List Are Complete)

»Can Use Level 1 Capabilities to
Determine Whether Functional
Blocks Pass or Fail

+Can Use Built-In Functional
Tests to Determine Whether
Functional Blocks Pass or Fail

+ Includes Level 1 and
Level 2 Capabiliies, and

*Can Datermine Whather
the UUT Passes or Fails

*Includes Level 1, Level 2, and
Level 3 Capabilities, and

=Can Isolate the Failing
Functional Block and Generate
Hints to Start GFI

Figure 1-1: Recommended Programming Sequence

functional tests will use stimulus programs from Level 1,
and others will have independent functional test programs,

* Level 3 Programming: Create a go/no-go test for the entire
UUT, by using all of the necessary functional block tests
to create a functional test of the whole UUT. This test
determines whether a UUT is good or bad, but does not
usually isolate the fault.

* Level 4 Programming: Add procedures to the go/no-go
test that will isolate the faulty block for any UUTs that fail
the go/no-go functional test. This addition to the go/no-go
test provides efficient starting points for automated
troubleshooting with GFI, If you have not already done
so in Level 1, create the node list and the reference
designator list. Your program will then be able to
backtrace from a bad node to the fault which causes it. Or
you can backtrace by pressing the GFI key on the
operator's keypad and specifying a failing node as the
starting point.

The 9100A/9105A is the center of a expandable system. For
example, fixturing can be added to improve functional test
throughput in high-volume applications. In addition, the
9100A/9105A can be integrated with manufacturing systems or
host computers.

WHERE TO BEGIN 13,

The 9100A/9105A system can be operated manually from the
operator’s keypad in an "immediate" (keystroke) mode, or it can
be programmed in TL/1 with functional tests and GFI
procedures using the programmer’s interface of the 9100A.

A good overview of the full capabilities of the 9100A/9105A
will be helpful before you begin using it in either mode. One
good way to explore the use of the 9100A/9105A is to adopt the
techniques shown in this manual to your own UUT. While
reading Section 4, you might try some of the reads, writes, and
built-in tests on your own UUT. To try Guided Fault Isolation
(GFI), you could treat a small portion of your UUT as if it were
the entire system to be tested and diagnosed. Two or three

1-6

components connected to the microprocessor bus are usually
sufficient for such an introductory exploration.

This manual does not assume that you know the TL/1
programming language, although examples of TL/l programs
are included throughout the manual. As you lock over these
programs and their explanations, you will find many of them
quite understandable. However, in some places, you may want
to refer to the Technical User's Manual, the Programmer's
Manual, or the TL/1 Reference Manual to learn how specific
keys or commands work,

T

S

‘ Section 2
Overview of Testing and
Troubleshooting

"Testing” determines whether a circuit is good (passes) or bad
(fails). "Troubleshooting” finds the faulty component or node
causing a circuit to fail,

Before microprocessors, a circuit board was tested by applying a
sequence of patterns to inputs at the board's edges or at selected
nodes within the board's circuitry and then measuring the
cutput. However, for circuit boards that use mMicroprocessors,
the most comprehensive coverage is provided by controlling the
UUT from the microprocessor bus. One common method of
doing this is to plug in a tester at the microprocessor socket.

Testers that control the microprocessor bus must be able to apply
stimuli and capture responses at specific times during the cycles.
As an example, consider a buffer on a microprocessor data bus:
since data is only stable during a small period of the bus cycle,
the outputs of the buffer must be measured at the proper time
during the bus read/write cycle.

The basic functions of a test system and the basic functions of a
troubleshooting system are similar. During either task, the
system must emulate bus cycles and measure levels and signal
patterns. But the two tasks have different goals. During testing,
the goal is to determine whether a UUT is good or bad; it is not
necessary to know where the faults are. However, in

21

troubleshooting the goal is to determine what component is bad
or what node is bad so that the UUT can be repaired.

Figure 2-1 shows a testing, troubleshooting, and repair cycle.
Some users consider testing and troubleshooting to be
completely separate tasks. Other users consider them to be
almost identical. In situations where volumes of each type of
board tested are high, and where many of the boards are likely to
be good, the testing and troubleshooting tasks are often
separated. But if board volumes are low or if many of the
boards tested are faulty, the testing and troubleshooting tasks are
often combined into a single process.

The 9100A/9105A can perform testing and troubleshooting as a
single task or as separate tasks. In ecither case, the system's
TL/1 programs are very similar because of the modular structure
encouraged by the 9100A programming environment. This
manual discusses a broad variety of test and troubleshooting
techniques; you can then determine how the techniques should
be linked and to what degree the entire process should be
automated for your application.

EMULATIVE TESTING 2.1.

2-2

The 9100A/9105A is an emulative tester and troubleshooter. By
taking control of the UUT's microprocessor bus, the
9100A/9105A can perform all operations, apply all stimuli, and
capture any responses that the UUT microprocessor could.

The 9100A/9105A is designed for testing microprocessor-based
hardware. The emulative testing approach of the 9100A/9105A
should not be confused with in-circuit emulators which also plug
into the microprocessor socket and are designed to test software,
The in-circuit emulators are difficult to use for board testing
because they work with assembly language (which is different
from one microprocessor to another). They also require the use
of breakpoints to allow examination of UUT registers and
memory to check out operation of the UUT. In contrast, the
TL/1 programming language of the 9100A/9105A has

P

—_

Board To Be Tested
And/Cr Repaired

Functional

Fail

Report
Failure Data

Test

Pass

3

Report
As Good

Y

{ Done '

Troubleshoot

Repair

Figure 2-1: Testing, Troubieshooting, and Repair

2-3

2-4

commands to perform read or write accesses without requiring
that you write any assembly language.:

The basic elements of the 9100A/9105A system's. emulative
testing are:

¢ Stimulation and response sensing at the microprocessor
bus by the pod.

®* Stimulation of circuitry by the pod, probe, and 1/O
module.

® Measurement of stimulation responses with the pod,
probe, and I/O module as the signals propagate throughout
the UUT.

®* High-level programming language (independent of the
target microprocessor) to control microprocessor accesses
and operations. ‘

Figure 2-2 illustrates these capabilities. The method of
emulative testing allows the pod to read from and write to any
components that the microprocessor can access. The pod can
initialize and program components in the UUT, such as DMA
controllers, PIAs, serial ports, and video controllers.

In addition to controlling the UUT from the microprocessor bus,
the pod senses loaded or faulty lines at the socket where the pod
plugs into the UUT. For example, if a data line has a short to
ground, the pod will detect that the line cannot be driven when
the pod attempts to drive the line high.

The I/O modules and the probe can measure and stimulate all of
the UUT's digital circuitry, including circuits not directly
accessible by the pod. The pod, I/O module, and probe are
used together or individually to provide a stimulus and to capture
responses.

The 3100A/9105A can characterize nodes with CRC signatures,
level histories (asynchronous or synchronous), transition
counts, and frequencies using the single-point probe or 40-line
I/O modules. I/O modules accommodate clip modules that fit

P

T
.

RS-232 Ports

9100A/9105A
Mainframe

External Control Pod
Lines For
Probe / l
NS N
l{e] [[e]
Module 1* Clock Module 2*
] Module Microprocessor y
~

|- 5 Bus 5 -1
40 T Control / / ; K\ Probe Control ﬁg

110 -
uuT

* Up to four 110 modules may be Used.

Figure 2-2: Emulative Testing With the 9100A/9105A

2-5

various IC packages. The I/O modules can also be used in
fixturing. '

When the 9100A/9105A stimulates the UUT through the
microprocessor bus, an I/O module or the probe can measure the
signals as they propagate through the UUT. Or, the I/O
modules can stimulate nodes and the pod can measure the
activity from the microprocessor bus.

A powerful feature of the 9100A/9105A is that it can perform
measurements which are synchronized to microprocessor
operations. For example, consider the microprocessor bus. It is
a flurry of activity when examined with an oscilloscope, but the
9100A/9105A can control this activity and can examine the
signals on the data bus at times when the signals are valid.

The probe and I/O modules can be synchronized to data,
address, and other pod cycles, as well as to external Clock,
Start, Stop and Enable inputs provided on the 9100A/9105A's
I/O module and clock module. The external sync modes are
valuable for measuring events asynchronous to the
microprocessor, such as video signals and free-running
counters.

NODE CHARACTERIZATION 2.2,

2-6

Node characterization is the process of finding a description of
the correct activity at a node, given an appropriate stimulus to the
UUT to exercise the node. A quality characterization is one that
is repeatable from one measurement to another, from one UUT
to another, and from one day to another. In addition, incorrect
activity at the node should result in a value that is different from
the characterization for correct node activity. The 9100A/9105A
uses the probe or the I/O module to measure five node
characteristics:

® CRC signature: This measures high and low levels relative
to a series of events (called "clock" or "sync") and then
encodes a Cyclic Redundancy Check (CRC) number
representing both level and timing. The signature, if

LT

stable, is the most accurate characterization of a node. If
the node changes states at or near the clock transition, the
signature is considered marginal because a slight relative
time change between clock and data will change the
signature.

* Asynchronous level history: This indicates whether the
node was ever at a high, low, or invalid level at any time
during a specified period.

* Clocked (synchronous) level history: This indicates
whether the node was ever at a high, low, or invalid level
atany clock or sync edge during a specified period.

* Transition count: This measures how many times the node
goes low-to-high during the measurement period. When a
given node is measured, a single count value is returned.
Learned responses stored in a response file, however, may
appear as a range of counts. If a range of counts is
specified, the measurement will be considered good if it is
within the specified range.

* Frequency: This measurement is done during a set time
interval and is unrelated to clock or sync modes. As with
transition counts, learned responses stored in a response
file may appear as a range of frequencies.

STIMULUS AND MEASUREMENT CAPABILITIES 2.3.

Figure 2-3 is an overview of the stimulus and measurement
capabilities of the 9100A/9105A. The devices used for this

include the; -

4 Pod,

® Probe (with clock module).
¢ /O module.

The following sections describe the capabilities of each of these
devices.

2-7

External Devices

R8-232

9100A/9105A

PROBE
POD (With Clock Module) YO MODULE
Function: Function: Function:
+« Microprocessor * Single channel = 40 channels
hus access * Input and output + Input and output
Measurement: Measurement: Measurement:
+ Read status lines * Level activity: * Level activity
* Read Asynchronous Asynchronous
) Synchronous Synchronous
Stimulus. = Transition counts « Transilion counts
* Reads, writes « CRC signatures + CRC signatures
» Writa control lines » Frequency to 40 MHz = Frequency to 10 MHz
» Pattern recognition
Stimulus and test funclions: Synchronization to: Synchronization lo:
Bus test * Pod «Pod
ROM test = External (Clock, Start, + External {Clock, Start,
RAM tests Stop, and Enable lines) Stop, and Enable lines)
Ramp » Freerun clock + Freerun clock
Rotate + Programmed (internal) « Programmed (internal)
Toggle

Pod-dependent functions

Stimulus:

» Drive or overdrive oulputs
{Pulse low, pulse high,
or loggle} :

Stimulus:
« Drive or overdrive outputs
» Qutput stored patterns

Figure 2-3: 9100A/9105A Stimulus and Measurement Capability

Pod Capabilities 2.3.1.

The Fluke interface pods provide the interface between the
9100A/9105A and the microprocessor bus of a UUT. The pod
has two modes of operation: normal mode (where the
microprocessor in the pod exercises the UUT microprocessor
bus while monitoring the activity on this bus) and RUN UUT
mode (where the microprocessor in the pod runs programs
stored in UUT memory). A wide variety of stimulus and
measurement commands are available either from the operator's
keypad or from programs written for automated implementation,

Additional information about pods,-“‘their use, and their
specifications is contained in section 2.4 of the Technical User's
Manual, the pod manual for the pod you are using, the
Supplemental Pod Information for 9100A/9105A Users Manual,
and section 3.5 of the Programmer’s Manual.

Probe Capabilities (With The Clock Module) 2.3.2.

The probe can provide either measurement or output at any
selected node of a UUT.

The probe can measure CRC signatures, asynchronous level
histories, clocked (synchronous) level histories, transition
counts, and frequencies. It has built-in lights to show the
current asynchronous level (or levels) at the probe tip or to show
the level (or levels) last seen by the synchronous level history
latches. The probe can be set up to use one of three different
sets of logic thresholds for its measurements: TTL, CMOS, or
RS-232.

The probe can also be used as an output device to output a series
of pulses. The pulses can be high, low, or can toggle between
high and low. The probe has sufficient drive capability (200mA
for less than 10usec or SmA continuously) to overdrive most
circuit nodes.

The probe is synchronized to other events by four
synchronization modes: freerun clock, pod data or address

sync, external sync (using the external control lines of the Clock
Module), and internal sync (for use under program control
only). The external control lines of the Clock Module use TTL-
level thresholds.

Additional information about the probe, its use, and its
specifications is contained in section 2.5 of the Technical User's
Manual, Appendix D of the Technical User's Manual, and
section 3.6 of the Programmer’'s Manual.

1/O Module Capabilities 2.3.3.

2-10

Each /O module can make simultaneous connection with up to
40 UUT nodes. I/O module adapters provide an interface
between the general-purpose connectors on the 1/O module and
components on a UUT. The smaller clip modules can be
plugged into either side A or side B of the I/O modules, and the
larger clip modules use both connectors.

An O module can measure CRC signatures, asynchronous
level histories, clocked (synchronous) level histories, transition
counts, and frequencies. Unlike the probe, an I/O module can
measure multiple pins at the same time. An1/O module can be
set up to use one of two different sets of logic thresholds for its
measurements: TTL and CMOS.

In addition, I/O modules can recognize words that exist across
selected UUT nodes. Recognition of specified words generates
a Data Compare Equal (DCE) condition, sends a signal out the
DCE pin at the side of the [/O module, and terminates any RUN
UUT in progress.

1/0 module outputs can be latched high or low, pulsed high or
low, or allowed to float (high-impedence). In addition, it can
use TL/1 commands to drive patterns out of each output.
Responses can be measured at any pin while the I/O module is
driving a pattern. An /O module has sufficient drive capability
(2A for less than 10psec or 200mA continuously) to overdrive
most circuit nodes.

T

~a1oy

An I/O module is synchronized to other events by four
synchronization modes: freerun clock, pod data or address
sync, external sync (using the external control lines located on
the I/O module itself), and internal sync (for use under program
control only). The external control lines use TTL-level
thresholds.

Additional information about the 1/0 modules, their use, and
their specifications is contained in section 2.5 of the Technical
User's Manual, Appendix D of the Technical User's Manual,
and section 3.6 of the Programmer's Manual,

TESTING AND TROUBLESHOOTING WITH
THE 9100A/9105A ' 24,

The 9100A/9105A can be used for-
* Functional testing,.

*_ Troubleshooting.
* Combined testing and troubleshootin g.

As a functional tester, the 9100A/9105A can determine whether
a UUT passes or fails a series of tests. Asa troubleshooter, the
the system can first isolate the failing functional block and then
identify a starting location from which detailed fault isolation can
locate the node or component causing the failure.

When testing and troubleshooting are performed at the same test
station, the 9100A/9105A performs the following sequence of
operations:

1. Perform a go/no-go (pass/fail) test of the UUT.

2. Diagnose a failing UUT to determine which
functional block is failing.‘

3. Identify a starting point for fault isolation,

4. Locate the the node or component causing the failure,

2-11

If testing and troubleshooting are performed at separate stations,
the 9100A/9105A would perform Step 1 at the testing station
and Steps 2 through 4 at the troubleshooting station.

In situations where Step 1 is performed by another type of
tester, which identifies suspect functional blocks to the
9100A/9105A, the 9100A/9105A can verify that the problem is
really in the indicated block before detailed fault isolation is
begun. Occasionally, the real problem is in a different functional
block than that indicated by functional testing; for example, a
functional tester might indicate a fault in the interrupt circuit,
whereas the real fault may lie in the serial I/O circuit. If the
failure is not in the indicated functional block, the 9100A/9105A
at the troubleshooting station can perform its own full functional
test to determine the location of the problem.

The 9100A/9105A has very fast built-in functions to test the
microprocessor bus, ROM, and RAM, as well as powerful built-
in fault condition handling capabilities that ease the
communication between the testing functions and the
troubleshooting functions.

After stimulus programs and a reference list of parts have been
developed for a UUT, the process of testing can be greatly
simplified with the TL/1 programming language's gfi test
command, which uses portions of the 9100A/9105A's Guided
Fault Isolation (GEI) database to automate much of the data
collection and comparison needed for evaluation of test results.

GFI Troubleshooting:

The 9100A/9105A uses the backtracing method (from bad to
good) for its built-in Guided Fault Isolation troubleshooting
capability. A functional test locates outputs that appear bad, and
GFI starts backtracing from those outputs to locate quickly the
failing node. In doing this, GFI uses its database of IC pinouts
(the part library, largely supplied by FIuke) and your node list
(with part-number references).

AT

P

The built-in GFI algorithm is efficient at backtracing. However,
troubleshooting time can be further reduced by having functional
tests provide suggested starting points for GEI (called "GFI
hints") as close as possible to the failing node or component.
Hints which are close to the fault improve the efficiency of GFI
by decreasing the number of nodes that GFI must trace through
before reaching the fault, ‘

You can improve GFI's backtracing by:

* Developing functional tests for intermediate functional
blocks wherever practical. If a functional test for a major
block fails, test the intermediate functional blocks and
provide hints which are close to the failure.

* Designing functional tests that, upon failure, measure
intermediate nodes in order to provide hints close to the
failure. Functional tests can also include fault condition
handlers that interpret diagnostic messages to determine
where the failure might be located,

2-13

(This page is intentionally blank.)

T

ST

- - Section 3
Developing Procedures
and Programs

UNDERSTANDING THE UUT 3.1.

A UUT should be well understood before functional tests and
troubleshooting routines are developed. Taking time at the
beginning to study the UUT will result in quicker program
development, greater fault coverage, and more accurate fault
detection.

Before developing functional test programs and troubleshooting
routines:

. Learn what each circuit does, how it works, and how to
initialize it.
* Determine the UUT memory map.

® Determine the initialization procedures for each
programmable chip.

PARTITIONING THE UUT 3.2

Circuit partitioning involves dividing the entire circuit into a
collection of smaller functional blocks which are easier to

3-1

understand and test. It is the first step toward a divide-and-
conquer method of testing and troubleshooting and it is time well
spent. Once the task is done, the functional blocks can be
considered as components, each of which receives inputs and
generates outputs. Like an IC, a functional block is suspected of
being bad if it has good inputs and bad outputs.

Here are some guidelines for partitioning circuits:

® Group circuits by function, making the functional blocks
well-defined pieces of the UUT block diagram and as
logically distinct as possible.

® If a functional block is large, subdivide it. This, will
improve troubleshooting efficiency.

¢ If failure of a circuit can cause failures to appear in many
other parts of the UUT, make that circuit a functional

block.
® Ifacircuit requires a unique test setup, make it a functional
block.
An Example of Partitioning 3.21

(The Demo/Trainer UUT)

3-2

The Demo/Trainer UUT (Figure 3-1) is an 80286-based system
which includes ROM, Dynamic RAM, Parallel I/O, Video, and
Serial I/O circuits. It is available from Fluke as an option and is
a good example of 16-bit microcomputer systems. Contact a
Fluke representative for information about this option.

The test and troubleshooting examples throughout this manual
relate to the Demo/Trainer UUT. With it, you can perform the
hands-on tests given in the following sections. The complete
UUT nodelist, part-reference list, and schematics are shown in
the appendices of the manual.

If you do not have a Demo/Trainer UUT, the examples provide
enough information so that you can follow the techniques and
sample programs and apply the concepts to your UUT.

P

@ RS-232 CONNECTOR

@ VIDEQ CONNECTOR

@ TEST SWITCHES (S THROUGH S4)
(@) smarus Leos

@ KEYBOARD CONNECTOR

(6) RESETBUTTON

@ 80286 MICROPROCESSOR

Figure 3-1: Demo/Trainer UUT

3-4

A simple block diagram of the Demo/Trainer UUT might show
only five blocks: RAM, ROM, Parallel I/O, Serial 1/O, and
Video. While this is useful as an overview of what the system
does, it is inadequate for the development of test and
troubleshooting procedures. By subdividing this diagram into
smaller sections, we arrive at functional blocks that can be more
easily understood. Figure 3-2 shows these smaller blocks,

which will be used as examples throughout this manual.

For example, the video circuitry is subdivided into three
functional blocks: Video Qutput, Video Control, and Video
RAM. This was done in anticipation that three distinct
troubleshooting setups would be needed for the video circuitry.
It was also done to reduce troubleshooting time by allowing
functional tests to determine which portion of the video circuit
has failed before GFI is invoked. Remember, troubleshooting
with GFI normally begins at an output node of the failing
functional block and backtraces toward good inputs to that
block. Subdivision allows GFI to begin backtracing closer to
the fault. For similar reasons, the dynamic RAM circuit is
subdivided into RAM and Dynamic RAM Timing,

The microprocessor itself is shown in Figure 3-2 as a separate
functional block for a good reason: when the pod replaces the
microprocessor, it becomes a known-good functional block. All
outputs from this circuit can be directly controlled by the
9100A/9105A. The pod checks for drivability on every UUT
access and reports if there is a loading problem.

The Bus Buffer is partitioned separately, not for reasons of
clarity, but so that it can have its own functional tests. If this
circuit has a fault in it, the fault will cause most of the other
functional blocks to also fail. So if the UUT fails a functional
test, it is more efficient to check the Bus Buffer early in the
troubleshooting process.

READY .

—

it 1l

Address Dynamic
® RAM <": RAM Timing
L1 LN
— = [
~ RCM Ready
C: 3 Circuit
| rX]
L —
Clock and
Reset “l
m — S ideo
l —1] v Video Address Data
N = = » g'df"l —‘> Video F———\] Video
L] vonire AAM v/[Oulput]_, GAT
b —] Disniay
Micra- |, INTR A B3
procassar 10

I]l

— >
L] »] Serlal Interrupt
— o [RS-232 Circult
7 Status and @
_Control 1[
Bus | paa [Keyboard
i e K
. Address — —J |—'\ Timer Interrupt
I' ‘/- Parallel
- ¥ /O
Address _‘< i). —= LED Displays
Dacode T T

Switch Inputs

Figure 3-2: Demo/Trainer UUT Functional Blocks

The Advantage of Partitioning , 3.2.2

After the partitioning is done, step back and look at the resulting
detailed block diagram, Imagine that a functional test has been
developed for each individual block. If a novice user has
nothing but this block diagram and the collection of individual
block tests, he can make a fair degree of progress toward
troubleshooting and repairing a complex system.

With thoughtful partitioning, a board may be determined to be
good without running all of its individual functional block tests;
some functional blocks can be assumed to be good if tests for
other functional blocks that depend on them are good.

Through partitioning, the large problem of testing and
troubleshooting a complex system can be subdivided into
smaller, more easily handled problems.

PROGRAM DEVELOPMENT SEQUENCE 3.3.

There are four levels in programming with the 9100A, as shown
in Figure 3-3. Each level is a building block for the next level of
programming.

The sequence shown below is the most efficient method of
developing programs if you plan to develop both functional
testing and GFI troubleshooting capability. This is because the
functional block tests in Step 2 can often use the GFI stimulus
programs developed in Step 1 to test the outputs of a functional
block (See Section 3.5.1 for additional explanation). However,
in other situations, you may need to use your 9100A/9105A for
functional testing as soon as possible, even before
troubleshooting programs can be developed. In this case you
may want to do Steps 2 and 3 before doing Step 1.

The four steps of programming are:
1. Stimulus programs for nodes are created and

responses from a known-good UUT are learned.
(Sections 3 and 4 of this manual)

o

Level 1

» Stimulus Programs for Nodes

* Learned Node Responses
from Known-Geod UUT

= Node List and Refaerence
Designator List (Both Optional)

Leve| 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Tast
for the Entira UUT

Leval 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 3-3: Building-Block Programming

3-7

If the node list and reference designator list are also
created, this level will allow not only testing a node,
but also antomated backtracing from a bad node to
the fault.

2. Functional tests of entire functional blocks are
created. The gfi test command can use your stimulus
programs and learned responses for fast, effortless
functional tests of these blocks. (Sections 3 and 4 of
this manual.)

3. A UUT golno-go test is built from the functional
tests of functional blocks. (Section 5 of this manual)

4. Diagnostic programs are created by adding fault
handlers and gfi hint commands to the UUT -go/no-
go test. The diagnostic program traps faults and
initiates tests of functional blocks that may be
responsible for the fault, thereby isolating the
functional block that is causing the UUT to fail.
When the failing output of the block is found, then a
GFI hint is generated and GFI will begin backtracing
the failing circuitry. (Section 6 of this manual)

After the fourth programming level, the go/no-go test will isolate
the failing functional block and then will start GFI
troubleshooting (Section 7 of this manual) to backtrace to the
bad node or component.

STIMULUS PROGRAMS AND LEARNED
RESPONSES 3.4.

3-8

Stimulus programs and learned responses constitute the first of
the four levels in programmed testing and troubleshooting, as
shown in Figure 3-4.

Stimulus programs create prédictablc node activity so that one or
more nodes can be characterized. When properly designed,
these programs are usually short and simple. With the 9100A,

Level 1 —I

* Stimulus Progrars for Nodes
+ Learned Node Responses
frem Known-Good UUT
*Node List and Reference .
Deslgnator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

—————

Level 4

-

Go/No-Go Test
far the Entire UUT,
with Fault Isolation

fo the Block Level

Figure 3-4: Functional Tests for Nodes {Level 1)

the most difficult task related to writing stimulus programs is
understanding how the UUT operates. '

Learned responses are the responses of a known-good UUT to
the stimulus programs. The 9100A/9105A can store these
responses from a known-good UUT for use in testing other
identical UUTs.

Rules for Stimulus Programs 3.4.1.

3-10

Stimulus programs must follow these rules, to ensure that GFI
troubleshooting reaches correct conclusions:

® Measure Outputs. Use stimulus programs to characterize
signal sources (outputs) only.

* Provide Initialization. If a circuit ever requires
initialization, place an initialization procedure in the
stimulus program. The initialization must be performed
before the measurement is started. The best place for
initialization is near the beginning of the stimulus program.

* A Separate Program for Each Signal Source on a Node.
Create a separate stimulus program for every signal source
(output) on a node. A bidirectional line between two
components should have at least two stimulus programs,
one for each direction of data flow. Buses should have at
least one stimulus program for every component that can
output on the bus.

®* A Separate Program for Each Mode of Output. Create a
separate stimulus program for each way that an output is
operated in normal UUT operation. For example, if a
buffer on an address bus is stimulated by the
microprocessor and also by a DMA controller, create two
stimulus programs for the outputs of the buffer: one from
the microprocessor, and one from the DMA controller.

® Keep It Simple. If a stimulus program becomes complex,
find a way to split it up into more than one program. For
example, consider a PIA chip connected to a data bus and a
keypad that can be read through the PIA. The stimulus

program that enables the PIA data lines onto the data bus
should initialize registers at the beginning of the program,
then the program should read the registers in the PIA chip.

The Flow of Stimulus Across the UUT 3.4.2.

Stimulus programs are unrelated to functional blocks.
Functional blocks are only defined to help with functional
testing.

Stimuli generally flow from the microprocessor kernel toward
the outputs of the UUT. Some stimulus programs may
characterize the outputs of many components while other
stimulus programs may characterize only a few outputs.

The key to efficient stimulus programs is to begin at some
outputs of the microprocessor kernel that can be stimulated,
Stimulate these outputs and trace through the circuit to see how
many other output nodes can be characterized. Find nodes that
have not been characterized, and decide what is needed to
stimulate them. Then, see how many nodes are covered.
Continue this process until each node is covered by at least one
stimulus program.

A good way to keep track of which nodes have been covered is
to use a set of colored markers. Using a separate color for each
stimulus program, color in a small region around the output
nodes which will be stimulated by that program (remember,
stimulus programs only apply to signal sources). Even for a
complex UUT, the strategy for creating stimulus programs for
an entire UUT can be "mapped out" in a few hours. The time
spent will promote better software organization and speed up
both the writing of stimulus programs and the process of
learning the responses.

Keep in mind the rules described in the Section 3.4.1, and
remember that some outputs will be characterized by more than
one stimulus program.

Stimulus Program Planning , 3.4.3.

Stimulus programs and their matching response files are used by
the 9100A/9105A Guided Fault Isolation (GFI) to backtrace
through a failing circuit in a UUT to find the fault. The stimulus
programs exercise a portion of the UUT circuitry in order to
produce repeatable activity at circuit nodes to be measured. This
activity at each node is measured on a known-good UUT and a
characterization of this known-good response is stored in a
response file, Each response file stores characterizations of how
some circuit nodes on a good UUT perform as a result of its
matching stimulus program. There is one response file for every
stimulus program.

Each of the fourteen functional blocks in Section 4 includes a
figure titled "Stimulus Program Planning." Figure 3-5 shows an
example of such a figure.

The purpose of the stimulus program planning diagrams is to
illustrate how to design the stimulus programs for a UUT. In
general, you should begin the process of creating stimulus
programs by identifying outputs from the microprocessor that
can be exercised (such as the address bus, data bus, and control
lines). Characterize all those nodes that are stimulated, then find
some nodes that are not characterized and design stimulus
programs to stimulate them. In general, start at the
microprocessor and work outwards to the I/O devices. Continue
until all nodes in the UUT are characterized.

The left-hand page of Figure 3-5 shows six blocks that represent
six stimulus programs and their matching response files. Each
of these stimulus program/response file pairs are used to
stimulate and characterize nodes in this functional block,

The block for the addr out stimulus program shows that it
stimulates the outputs of the address buffers: Ul6, U2, and
U22. As you examine each of the stimulus program planning
figures in Section 4 of this manual, you will notice that the
addr_out stimulus program stimulates nodes in many of these
functional blocks. This is because the stimulus programs are not

P

(This page is intentionally blank.)

3-13

Example

Stimulus Program Planning

PROGRAM: ADDR_OUT

EXERCISES ALL ADDRESS LINES FROM THE
MICROPROCESSOR

MEASUREMENT AT:

U16-19,16,15,12.965,2
U2-19,16,15,12,9,652
U22-19,16,16,12,9

3-14

Example

IEE

60266 READY
HICROPROCESSOR CIRCULT
]
L CLOCK AND RESET
+
82208 EWPC
e prys ALSOd A
1S Jeen /A oEn| 26 2 g 53 La22
. vs7 1oft200 10} uis B A
e s]us
FERD
HWRTTE
READY IREAD
THRTTE
INTL
AAH
[
L
51
coo/Tatx
. W35 OYNAHIGC
IW/TO 44,6 gy A
g TIHING
(117
(118
ADDRESS |—ud
DECODE
15
FET)
A33
AT
i ROM [
A10
[XE]
FT 108
4
a1 INTERRUPT
Lssra . CIRCOIT
407 3 P a07
A8 Y o1 408
05 2 an 205 raigs
ADa 3 a3l AQ4
203 3bs asf32 1a03
Fac 3 15 Taca
s : DE g: 13 Taee PaRALLEL
400 Bl oy i8 Iaco Ve
1
1
1
v
ALS245 !
p1%
s SEATAL
ot 1/0
ci2
oii
040
loss
[:3
VIDEQ
RAM
Do?
00E
005 I00s
D04
£ YIDED
03 ewanz CONTROL
15

Figure 3-5: Example of Stimulus Program Planning Figure

3-15

limited by functional block boundaries and typically will
stimulate nodes over several functional blocks.

Figure 3-5 shows that the data_out stimulus program stimulates
the bidirectional data bus when the microprocessor is sending
out data (a write operation). The figure also shows that the
roml data stimulus program is used to stimulate the data bus
buffers U3 and U23 when data is flowing into the
microprocessor (a read operation).

The other three stimulus programs shown (c#ri_outl, ctrl_out2,

and ctrl_out3) stimulate the control line outputs from the
microprocessor and bus controller IC (an 82288 chip); ctrl_outl
stimulates the control lines using pod data synchronization;
ctrl_outr2 stimulates the control lines using pod address
synchronization; ctrl_out3 generates an interrupt acknowledge
cycle and stimulates the control lines using interrupt
acknowledge synchronization.

When planning the stimulus programs for your UUT, you can
use colored pens to map out which outputs in your UUT will be
covered by which stimulus programs. You should start with the
address signals, data signals, and control signals. After that, you
can plan what is required for stimulus programs for other
outputs in your UUT, working from the kernel toward the I/O of
the UUT.

Suggestions about Stimulus Programs 3.44.

3-16

The actual stimulus programs used for the Demo/Trainer UUT
are listed in Section 4 of this manual. Some stimulus programs
stimulate nodes in several functional blocks and other stimulus
programs stimulate only a few nodes. The fact that, in Section
4, stimulus program coverage is organized by functional blocks
does not imply that the stimulus programs observe functional-
block boundaries. Stimulus programs do not care about
functional block boundaries and usually will exercise nodes
across functional-block boundaries.

T

Each of these stimulus programs in Section 4 follows a standard
form that can be divided into five parts:

* Initialize the circuit and define the measurement device.
* Setup the stimulus and measurement devices.

¢ Start the measurement.

® Stimulate the circuit,

* Stop the measurement.

®* Restore any conditions chan ged by the setup, above.

Figure 3-6 shows a simple stimulus program with each of the
six parts labeled. Circuits that contain programmable
components require initialization. Any circuit that needs
initialization should have it provided in the stimulus program,
This is necessary since there is no way to determine the order in
which stimulus programs will be run when GFI or UFI
troubleshooting is performed. Therefore, each stimulus
program should perform any initialization the circuit needs.

Defining the Measurement Device

Most stimulus programs use the I/O modules and the probe as
measurement devices. When GFI or UFI is using the 1/O
module as a measurement device, a message is displayed which
prompts the operator to clip onto the component and to push the
Ready button on the clip module. When the operator does this,
the 9100A/9105A identifies the I/O module and the side (A or B)
being used.

GFI or UFI can tell a stimulus program which device is being
used. It is a good idea to write your stimulus programs so that
the measurement device name is obtained from GFI or UFI
rather than specifying the device name in the stimulus program.
Getting the name from GFI or UFI has the advantage that the
operator can connect a clip to either side of any of the four I/0
modules. The operator can use several I/O modules, each with a

3-17

pregram data_bus

if {gfi control} = "yes" then ! DEFINE THE MEASUREMENT
devname = gfl device ! DEVICE
else
devname = "/modl"
end if
podsetup 'enable ~ready' "off" ! SET UP THE MEASUREMENT
podsetup 'report power' "off" ! AND STIMULUS DEVICES

podsetup 'report forclng® “off™

podsetup 'report lntr' "off"

podsetup 'report address' "off"

podsetup 'report data' “off"

podsetup 'report control' "off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data"

arm device devnanme [START THE MEASUREMENT
rampxdata addr 0, data 0, mask SFF ! STIMULIATE THE CIRCUIT
rampdata addr 0, data 0, mask $FFOC

readout device devname ! STOP THE MEASUREMENT

podsetup 'enable ~ready' "on" { RESTORE RERDY

end program

Figure 3-8: Parts of a Stimulus Program

3-18

different size of clip, and the stimulus program will still work
with any of these configurations.

The stimulus program shown in Figure 3-6 uses the TL/1 gfi
control command to determine that GFI or UFI is executin g the
stimulus program. If GFI or UFI is executing the program, the
gfi device command is used to return the name of the
measurement device.

Using the I/O Module as a Stimulus Device

Each I/O module can be used to overdrive a limited number of
components. The same I/O module or a different I/O module
may be used to measure circuit response.

For example, suppose an I/O module is used to perform a truth-
table test of a 7400 NAND gate. The I/O module is clipped to
the 7400. Pins 1 and 2 of the 7400 are inputs and pin 3 is the
output. The same I/O module drives the inputs and measures
CRC signature responses on the output. Each time the pattern is
driven on the inputs, the output's CRC signature is sampled.

In this example, the same I/O module is used as the stimulus
device and as the measurement device. In some cases, more
than one clip is used in stimulating and measuring circuit
response. The gfi device command returns the device name of
the measurement device being used.

The stimulus program should use the cfip command or the assoc
command to identify the stimulus device. This command will
prompt the operator to clip to the component and push the Ready
button on the clip module. Using this method to identify the
stimulus device creates a program that allows the operator to use
any I/O module for the measurement device and any other I/O
module for the stimulus device.

Two steps are necessary to drive a pattern on a set of inputs,
First, a storepart command is written for each input pin to be
driven. If five inputs are to be driven, five storepatt commands
are needed. After the patterns are defined by storepart, a

3-19

3-20

writepatt command is used to clock out all the defined patterns in
parallel.)

The 1/O module has 40 lines. Clips have 14 to 40 pins. Each
clip maps to the I/O module lines in a different way. The 40-pin
clip is one for one (clip-pin 1 is mapped to I/O module-line 1,
etc.). The other clips have a different mappings (shown in
appendix B of the Technical User's Manual).

The TL/1 commands that involve an I/O module refer to pin
numbers in three different ways. These TL/1 commands have a
parameter that specifies the device name. If the device name is
an I/0 module name (such as "/mod1"), any pin numbers in that
command will be treated as [/O module line numbers. If the
device name is a clip module name (such as "/mod1A"), any pin
numbers in that command will be treated as clip module pin
numbers. And, if the device name is a reference designator
(such as "U14"), any pin numbers in that command will be
treated as component pin numbers.

If the device name is a reference designator, the component must
have been clipped in response to a request from GFI, or in
response to a TL/1 ¢/ip command prior to being used in an /O
module command.

Consider the example of a 7400 that is to have pins 1 and 2
driven by the I/O module. The reference designator for the 7400
is U3. The following TL/1 commands will perform a truth table
test on one gate in the 7400: :

dev = clip ref "U3", pins 14
storepatt device "U3", pin 1, patt "1010"
storepatt device "U3", pin 2, patt "1100"
arm device dev

writepatt device dev
readout device dev

The clip command must be used here to define the I/O module
and the I/O module side (A or B) that is clipped to U3. The two
storepatt commands define the pattern to drive on pins 1 and 2 of
U3. Because a reference designator was used as the device
name (rather than a clip module name like "/mod1A") in the

.,

Storepatt commands, any size of clip can be connected to U3.
Suppose a 16-pin clip is connected to U3. The 9100A/9105A
knows, from the clip command, that the part has 14 pins. As
long as pin 1 of the 16-pin clip is placed on pin 1 of the
component, the 9100A/9105A will map the pins correctly. GFI
and UFI are also able to use clips larger than the component they
clip over to measure the response of that component.

The arm and readout commands start and stop the measurement.
Inside the measurement, the writepatt command sends the
defined patterns to the specified pins. Because the writepatt
command is surrounded by the arm and readout commands, a
CRC signature can be gathered on the input pins or the output
pins of the component, as determined by GFI.

In general, stimulus programs can be written so that any I/O
module can be used either for stimulus or measurement. To do
this, use the device name returned by the TL/1 gfi device
command for measurement devices. If the stimulus program
uses the /0O module as a stimulus device, use the clip statement
and reference names for device names in the TL/1 commands
(pin-number parameters) that interact with the I/O module,

FUNCTIONAL TESTS 3.5.
Functional tests of blocks are the second of the four modular
levels in programming the 9100A, as shown in Figure 3-7. In
this second level, tests of functional blocks are created from
stimulus programs and response files.

The goal of a functional test is to evaluate the performance of the
functional block and to decide whether the entire block is good
(passes) or bad (fails). As shown in Figure 3-8, such a test can
be divided into the following steps:

1. Initialize the circuits in the block (if necessary).

2. Stimulate the inputs to the block.

3. Measure the outputs from the block.

3-21

3-22

Level 1

= Stimuwlus Programs for Nodes

*Learned Node Responses
from Known-Good UUT

«Node List and Reference
Dasignator List (Both Optional)

Levei 3

Go/No-Go Test
for the Entire UUT

Level 4 I

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Biock Lavel -

Figure 3-7: Functional Tests for Functional Blocks {Level 2)

P

P

Initialize

Stimulate

Measure

Evaluate
{Passes or Fails)

L) Figure 3-8: Functional Test Elements

3-23

4. Evaluate each output and decide whether the output
passes or fails. If all outputs pass, the block is
good, otherwise it is bad.

Programmed Functional Tests 3.5.1.

Programmed functional tests perform all four functional test
steps automatically. There are three basic methods of writing
functional tests for each functional block in the UUT:

® Using the TL/1 built-in functional test commands - Use for
testing the microprocessor bus, RAM, and ROM.

¢ Building on stimulus programs - Use the gfi test command
to build on stimulus programs and learned responses.

¢ Writing TL/1 programs which are independent of GFI -
These programs must perform all four functional test
steps.

Using Built-In Functional Test Commands

For some functional blocks, such as the microprocessor bus,
ROM, and RAM, you should not use the gfi rest command.
Instead, these blocks can be tested with the built-in TL/1
functional test commands testbus, testramfast, testramful, and
testromfull.

Building On Stimulus Programs

3-24

Stimulus programs and learned responses are used to decide if a
node passes or fails. The TL/! programming language has a
command called gfi test, which performs Steps 1 through 3 of
functional testing and part of Step 4 (see Figure 3-8).

The gfi test command tests an entire component (if the I/O
module is the measurement device) and returns a passes or fails
result. The command runs all stimulus programs associated
with all pins on the component and compares the responses to

P

E——

the learned responses. It returns a "passes" result if all pins on
the component are good.

Suppose the buffers of a 24-bit microprocessor address bus are
tested as a functional block. If the functional test is written
without the gfi test command, the test would perform the
following operations:]

1. Stimulate the address bus.
2. Capture signatures on the 24 address lines.

3. Compare captured signatures with known-good
signatures (24 if/then statements).

The same functional test using the gfi rest command would
require only three gfi test commands. Using this command
decreases the time required to write functional test programs.

Using the gfi test command provides an additional important
advantage. When it is used, the known-good responses are
automatically retrieved from the the 9100A/9105A's response
files. Whenever a board is revised, the response files must be
updated. If a functional test contains known-good response
information built into the program, rather than stored in response
files, both the response file and the functional test program must
be updated if the board is revised.

You may need to develop a test quickly for just one functional
block and avoid writing stimulus programs or learning
responses for the entire UUT. In this case, the following
procedure will help ensure that the functional test you write will
later integrate well into the functional test for the entire UUT:

1. Make a plan for the stimulus programs you will need
to cover the entire UUT. This usually takes several
hours,

2. Write the stimulus programs needed to test the block
in question.

3-25

3. Write the functional test for the block using the gfi
test command wherever possible.

4. After the test for the block is finished, you can
continue with the process of writing stimulus
programs and learning responses for the rest of the
blocks in the UUT.

Functional Tests That Are Independent of GFI

You can also write functional tests that do not require the use of
stimulus programs and response files. If so, these tests should
also contain the functional test elements shown in Figure 3-8.

Programmed Functional Test Examples 3.5.2.

3-26

The programmed functional tests for each functional block in the
Demo/Trainer UUT are listed in Section 4 of this manual. The
simplicity of these functional tests results from using the gfi test
command and the built-in test functions.

It is tempting to write a functional test without first writing
stimulus programs. However, a penalty is paid for this
approach in two ways: it can actually take longer if stimulus
programs are not created first, since the 9100A/9105A already
has built-in functions to do much of the functional testing once
stimulus programs are created. Second, stimulus programs will
have to be written anyway before GFI troubleshooting can be
used.

The sequence of steps shown in Figure 3-7 will in most cases
give you the best results in the shortest time. Each increment of
programming investment will result in better performance and
productivity.

T

Keystroke Functional Tests 3.5.3.

A UUT may be tested using only 9100/9105A front panel
keystrokes. Keystroke testing also involves each of the four
functional test steps (initialization, stimulation, measurement,
and evaluation) shown previously in Figure 3-8, but the operator
performs these steps rather than having the 9100A/9105A do
them with TL/1 programs. If you wish, these steps can be
stored in keystroke sequences by using the SEQ key on the
operator's keypad.

Each of the fourteen functional blocks in Section 4 has a
"Keystroke Functional Test" figure like the example shown in
Figure 3-9. The purposes of these figures are the following:

® Show the schematic diagram for that functional block.

®* Show the inputs to the functional block from other
functional blocks.

® Show the outputs of the functional block to other
functional blocks.

¢ Identify the 9100A/9105A measurement and stimulus
devices used to test the block and to identify where those
devices are connected.

¢ Show the expected node response information from
performing the functional test sequence for that block.

Figure 3-9 is a typical example of a Keystroke Functional Test
figure that you will see for each of the functional blocks
described in Section 4 of this manual. In most cases, the
functional blocks to the left of the schematic are those which
provide input to the functional block shown in schematic form.
In most cases, any functional blocks to the right of the schematic
are receiving the outputs of the functional block shown in
schematic form. The arrows show the direction of the signals
between the functional block boxes and the functional block
shown in schematic form.

Notice the left-hand page of Figure 3-9. At the top of the page is
a box labeled CONNECTION TABLE. The left column of this

3-27

Example

Keystroke Functional Test

CONNECTION TABLE
MEASUREMENT CONTROL MEASUREMENT
(NONE} 1O MOO - 140 MOD

CLOCK U78-33 urz

START U8B-13

sTOP U8B-13

ENABLE u78-12

RESPONSE TABLE
SIGNAL PART PIN 1/0 MOD PIN SIGNATURE
DADOO Ur2-34 34 4155
DADO -3 33 3F33
DADO2 -a2 a2 ABSA
DADO3 -3 # 9024
DADO4 -30 30 DEGD
DADOS 29 20 D&FA
DADDS -28 28 TACS
DADO? -27 27 D477
DADOS -26 26 E941
DADOD -25 25 8888
DAD10 24 24 80BO
DADA1 -23 23 D860
CLOCK AND RESET —OWK g 80286 BUS
MICAOPACCESSOR BUFFER
RESET 32MHZ
REATY
READY ADDRESS | e YIOELY
CIRCUIT DECODE o R
VAXHADY

3-28

Example

ADQVANCED YIDEQ OISPLAY
CONTAOLLEA {avOC)

2674 TELR
-7 L E—
8V 35TamL cTALE |4 NG Qa00a4
cTAuz [5HG Eadsey
HC 35 8 N
MG 33 TRTR cTAL3 BADOOE
_IA03 as| 24 NG 0A0003 4
[0z 58] a2 DADGISZEND - 040004
IAD az Al DADD1 4| 23 DADD11
nmu;o%% :nu a
‘DADDg [23___DAODOD | -
| VIOSLT 2 Iz pADDa [28__ DADDOB] YIDED
TAAITE 3 |um DapD? - [27__ DADEGT | R
o oAGos |28 DADOGE] AH
B L oADOS
0ADC4
| 1007 | 151p7 04003
| 1006 14]pg 04DD2
25 13lpos DADDL
| 1004 124, DADDG
| 1003 115,
02__10] g3 cuURSDRL_Z___ GUASOR
10615 |py BLANK |17 BLANK
IDCO B lpo FECR |18 TCLK
HSYNG 118 HSYNC
veyncld8___veYNe]
uza i

TR

¥ 3 LSO

BHE-3
3 14
s135 %
4 oal_2 04
ue2
n 3 EELECTA
[] 8 Lsi0
vser] U°° 1 18 12
uas
an g LB10 13
(i ::‘ uso 2
@0
L5060
B¢ 19 4 1o =520
501z urs
B urs) B 13
LED4
7 2 azmz 9
+5Y] La14 3
Usa
BEAD 2 14] 10 TR
EER_ 3, a30
VSEL 4 u13
% s L9 p-2
13 6
I T
ToRE 10308 12
1460 @ J usi > E5ET

Figure 3-9: Example of Keystroke Functional Test Figure

3-29

3-30

table, labeled STIMULUS, shows what 9100A/9105A device is
used to provide stimulus to the functional block shown in
schematic form and where the connection is made. In the
example shown in Figure 3-9, no stimulus is provided because
this diagram is part of the video circuit and, once initialized, the
video circuit constantly runs with no additional stimulus. In
many of the keystroke functional test diagrams in Section 4, the
STIMULUS column will indicate that the pod or IO module is
used. '

The right column of the CONNECTION TABLE, labeled
MEASUREMENT, shows which 9100A/9105A device is used
to measure circuit response for the Keystroke Functional Test.
The measurement device can be the probe, the pod, or an I/O
module. This column also shows the components or nodes in
the circuit that are to be measured.

When the I/O module is the measurement device and its external
control lines are used, a third column, labeled
MEASUREMENT CONTROL, shows where to connect the
START, STOP, CLOCK, and ENABLE lines.

The RESPONSE TABLE shows the names of the signals to be
measured, the component and pin numbers to be measured, the
corresponding pin numbers used by the I/O module, and the
known-good measurement value for each signal.

./"‘_\

T

L

| Section 4
Functional Block Test and
Troubleshooting Examples

This section is organized into fifteen sub-sections. The first
fourteen sub-sections each contain the following information:

®* General discussion of a kind of functional block.

® Testing and troubleshooting approaches.

* Keystroke testing procedure for Demo/Trainer UUT.

* Functional test program listing for Demo/Trainer UUT.
* Stimulus programs and responses for troubleshooting.

® Summary of solution showing all files and programs
needed to test and troubleshoot the functional block.

The last sub-section covers types of circuits not found in the
Demo/Trainer UUT and is therefore organized differently than
the above.

For the purpose of learning how the 9100A/9105A works, each
of the fourteen functional blocks can be considered to be a self-
contained portion of the UUT. The Summary of Solution page
at the end of each sub-section shows all of the files required to
test or troubleshoot that functional block.

Only a subset of all the functional blocks in a UUT needs testing
to determine whether the UUT is good or bad. This is because
testing the major functional blocks indirectly tests the other
blocks as well. (See Section 5 for more details on functional

4-1

4-2

testing strategy for a complete UUT). For the Demo/Trainer
UUT, testing the following major functional blocks will be
sufficient for a UUT go/no-go test functional test:

Microprocessor Bus.
ROM.

RAM.

Parallel I/O.

Serial I/O.

Video Output.

The remaining functional blocks covered in this section are
useful for troubleshooting the UUT if it fails the go/no-go UUT
functional test:

Dynamic RAM Timing.
Video Control.

Video RAM.

Bus Buffer.

Address Decode.
Clock and Reset.
Interrupt Circuit,
Ready Circuit.

You will find that the Dynamic RAM Timing, Video Control,
and Video RAM functional blocks come from subdividing the
RAM and Video blocks into smaller-size blocks.

Microprocessor Bus

MICROPROCESSOR BUS FUNCTIONAL BLOCK 4.1.

Test Access to the Microprocessor Bus 4.11.

The term “test access" refers to the point at which the pod
connects to the Unit Under Test (UUT). In most cases, a
UUT's microprocessor or microcontroller is replaced in its
socket by the pod, but this is not always the case. For example,
if the microprocessor is soldered in, the UUT can be designed to
allow a bus-cycle emulation pod to access the bus through a test
connector,

The test access allows the 9100/9105A pod to perform reads and
writes on the microprocessor bus. The pod can selectively
ignore inputs which normally would go directly to the
microprocessor. Thus, any faults that would stop the
microprocessor can be ignored by the pod, and testing can
proceed as though the microprocessor were in a good circuit and
functioning properly. t

The pod uses microprocessor bus emulation as the primary
means of testing and troubleshooting. It can generate stimuli to
the UUT and capture the responses in conjunction with other
9100/9105A stimulus and measurement devices, thereby
providing excellent troubleshooting capability for all
microprocessor signals. The pod can perform basic
microprocessor read and write operations, various stimulus
functions built from multiple reads and writes, and built-in tests
such as bus, RAM, and ROM. The pod also verifies that the
microprocessor power supply is within tolerance, and that all
power supply pins are connected.

A little foresight in the design of test access can make testing
much easier. Here are some general guidelines to facilitate
testing:

* Provide clearance around all devices. This allows access
for the pod connectors (to replace the microprocessor or
plug in a test socket), for a component extraction tool Gf
components are hard to remove, especially pin-grid array

Microprocessor Bus

4-4

(PGA) types), and for I/O module clips (especially if
adjacent components must be clipped simultaneously).

Provide some means to access the microprocessor bus if
the microprocessor is soldered in. An additional micro-
processor socket or card edge connector can provide this
access. Consider providing some form of test access even
though the factory or service center may use test fixturing,
since this allows testing in field situations where no test
fixturing is available.

Use resistors to the power supply or ground to establish
static logic levels on unused inputs instead of directly
connecting inputs to power supplies or ground. This
allows the 9100/9105A to drive these inputs.

If there are microprocessor inputs that will force most of
the microprocessor outputs to a high-impedance state,
design the UUT so that the 9100/9105A can drive these
inputs.

If there are microprocessor outputs that cannot be placed in
a high-impedence state, design the UUT so that these
outputs are buffered and the buffer outputs can be turned
off or overdriven by the 9100/9105A.

Allow the UUT clock to be suppressed to permit the UUT
to operate with an external clock,

Ensure that vendors' specifications for load and timing
margins are not violated and, if possible, allow for a
further margin.

Design so that all signals at a ROM chip can be latched by
the I/O module with DATA synchronization.

Pull up all lines carrying data signals to a logic 1 through
resistors.

Considerations for Testing and
Troubleshooting ‘ 4.1.2,

Kernel Testing

- The combination of the microprocessor, ROM and RAM is
collectively referred to as the kernel. The primary advantage of
Fluke test and troubleshooting equipment for microprocessor-
based UUTs over equipment from other vendors is its ability to
troubleshoot dead kernels.

If any part of the kernel malfunctions, very little else works
properly. One basic strategy is to test the kernel first, then test
the other functional blocks surrounding the kernel.

The 9100/9105A has a comprehensive built-in test for the
unbuffered microprocessor bus. This bus test is a series of
reads and writes at different addresses while monitoring
microprocessor outputs for faults. The bus test is described in
detail in Section 6.2.1 of the Technical User's Manual. With
this bus test, the 9100/9105A can determine stuck or tied lines
on all outputs from the microprocessor bus. During a bus test,
active interrupts or forcing signals that cause the microprocessor
to malfunction will be intercepted by the pod and reported to the
9100/9105A unless they have been specifically disabled with the
podsetup command in TL/1 or the SETUP POD command on
the operator's keypad. The bus test will also report a bad power
supply or an inactive clock.

Figure 4-1 summarizes the major conditions reported by the bus
test. Faults such as stuck bus lines, missing clocks, and low
UUT voltages must be cleared before further testing can
proceed.

Finding the source of bus faults may be complicated by multiple
bus-master and intervening buffers. For example, a buffer may
be loading the bus because its enable line is asserted due to
faulty circuitry back several logic gates from the bus. If there
are several bus masters, it may be unclear where the fault is.
Bus masters may be identified as *masters in the node list. The

4-5

Microprocessor Bus

Signal Group Condition

Example Message

Address Lines stuck, tied

bata Lines stuck, tied

Control Lines stuck, tied
Interrupt Lines active

Forcing Lines active

Clock inactive
Power Lines out of
tolerance

addr line A9 pod pin 22 stuck high

data line D8 pod pin 37 tied
data line D9 pod pin 39 tied

comntrol line HLDA pod pin 65 not drivable
interrupt ~INTR pod pin 57 active

forcing signal RESET pod pin 29 active
pod timeout bad UUT clock

bad UUT power supply

Figure 4-1: Conditions Reported by the BUS TEST

P

Microprocessor Bus

*masters identification, combined with independent stimulus
programs for each bus master, assist GFI in backtracing faults
identified on buses.

For more information on *masters, stimulus programs, and
response files, see Section 7 of this manual and Section 5.5 of
the Programmer's Manual.

Basic Bus Cycles

It is often useful to perform a series of reads and writes to verify
proper operation of basic bus cycles. To do this, you need the
address map of the UUT. You can verify bus-cycle operation
with reads from and writes to RAM, ROM, or other memory-
mapped VLSI devices such as PIAs, DMA controllers, SCSI
controllers, and UARTS. If your UUT's microprocessor allows
transfers of different data widths (byte, word, long word),
transfers with these different data widths should be verified.

If reads do not return the correct data when no major bus faults
are indicated by BUS test, try the built-in RAM test or ROM
test. RAM test checks the ability to read and write all RAM cells
specified in the address range. ROM test checks the ability to
read from ROM and verifies the ROM signature. Other kernel-
related functional blocks, such as Address Decode, Bus Buffers,
or Ready circuitry should also be tested, as described later in
Section 4 of this manual.

Synchronization Modes

When you are troubleshooting faults related to bus cycles, it is
useful to synchronize the probe or 1/0 module to pod operations.
The pod itself can be synchronized to different parts of the bus
cycle that may be appropriate for a particular test. For example,
a microprocessor with multiplexed address and data will output
the address only during the first part of a bus cycle. To test for

4-7

Microprocessor Bus

address faults, an I/O module or the probe can be synchronized
to the address using these TL/1 sync commands:

sync device "/pod", mode "addr"
sync device "/modl", mode "pod"

or from the operator’s keyboard using the SYNC key:
SYNC I/0 MOD 1 TO POD ADDR

With the above synchronization, the I/O module can capture
address or other information in functional blocks related to the
address. In a similar way, the probe or 1/0 module can be
synchronized to data, or to other microprocessor-specific bus-
cycle phases implemented by the pod. '

Other Microprocessor Cycles

4-8

Other microprocessor cycles may be exercised as part of the
microprocessor functional block, such as interrupts, bus
exchanges, DMA transfers, or coprocessor cycles. Usually,
however, implementation of these cycles involves circuitry that
is complex enough to be partitioned separately. Here are a few
considerations to keep in mind when testing:

¢ Interrupts are reported by the pod as "active interrupt
lines". When a RUN UUT command is entered at the
operator's keypad, control is returned to the
microprocessor, The operator should be sure that the
software needed to set interrupt priorities and handle
interrupts is present so that RUN UUT operates properly.
Some designs employ a watchdog timer, which asserts a
non-maskable interrupt or reset unless the microprocessor
performs a write within a certain period of time. When
you use pod breakpoints, the watchdog timer should be
disabled, the pod should be set up to ignore the watchdog
timer output, or software should be written to handle the
interrupt.

el

Microprocessor Bus

Bus Exchanges take place when the microprocessor
gives control of its bus to a requesting component. Pods
allow this capability to be enabled or disabled. When
enabled, the pod will grant bus requests just as the
microprocessor would. The pod may appear to take an
abnormally long time to perform certain tests, such as
RAM test, if other components take control of the bus or if
a fault condition causes bus requests. Disabling bus
requests will command the pod not to grant the bus request
and will cause bus requests to show up as forcing signal
conditions. If the RUN UUT command is entered at the
keypad, control is returned to the microprocessor and the
bus request line will be re-enabled. Further
troubleshooting with RUN UUT may require that the line
be physically disabled.

DMA controllers are integrated with some
microprocessors, such as the 64180. The DMA channels
operate semi-autonomously and interact with the bus
exchange capability. Cautions similar to those used with
bus exchanges should be used for DMA channels.

Dynamic RAM Refresh capability is included on some
microprocessors, such as the Z80 and the 64180. At
regular intervals, a refresh cycle is performed and an
address is placed on the address bus. The Z80 and 64180
have refresh signals (RFSH and REF, respectively) which
indicate when refresh activity occurs. The frequency of
these signals may be monitored with the probe to
determine if refresh is working properly.

Coprocessors work in conjunction with some 16- and
32-bit microprocessors. These coprocessors usually have
a unique set of signals which control the transfer of data
with the main processor. Inputs are called status lines and
may be read and reported by the pod. Outputs are called
control lines and may be written to check drivability or to
send information to the coprocessor.

Microprocessor Bus

Other Input and Output

There are other types of inputs and outputs specific to each
microprocessor which do not fall into the four basic
classifications, address, data, control, and status. These are
classified as miscellaneous and include signal types such as
bit/parallel, serial, and analog I/O. Each pod treats these lines in
a manner appropriate to the specific microprocessor. Refer to
the particular pod manual for information on how to handle these
signal types.

Microprocessor Bus Example 4.1.3.

The Demo/Trainer UUT uses an 80286 microprocessor, which
has a 16-bit data bus and a 24-bit address bus. The
Demo/Trainer UUT uses only the least significant 20 bits of the
address bus.

The 80286 microprocessor remains in the UUT at all times, so
the Demo/Trainer UUT includes a test access socket to provide
access to the microprocessor bus. Most of the lines in the test
access socket are directly connected to the microprocessor,
although a few lines such as HOLD and HOLDA are buffered
with three-state buffers. The test access switch, S5, selects
either the 80286 microprocessor in the pod or the 80286
microprocessor on the UUT to control operation of the UUT.

Keystroke Functional Test | 4.1.4.

4-10

Use the BUS TEST key to enter the following command:
TEST BUS AT ADDR 0
The above command is the entire procedure; the Microprocessor

Bus functional block (Figure 4-2) can be tested fully with this
single test.

—

Microprocessor Bus

The microprocessor bus test is built-in. It is convenient to run
first because:

® It's easy.
® It's fast.
* It provides excellent diagnostic information.

. A bus fault will cause almost all other functional tests to
fail, so it should be tested first.

The bus test uncovers all drive problems that may occur at the
microprocessor socket. These faults will cause other tests to
fail, but the diagnostics for bus faults are best with BUS TEST.
If a fault is uncovered, a message will be displayed to the
operator. See Appendix F in the Technical User's Manual for a
list of fault messages.

Microprocessor Bus

Keystroke Functional Test

CONNECTION TABLE
MEASUREMENT
| v
TEST ACCESS SOGKET TEST ACCESS SOGKET

RESPONSE TABLE

(BUILT-IN RESPONSE MEASUREMENT)

READY INTERRUPT
CIACUIT CLOCK AND RESET CIACUIT
50 BT READY CLK |RESET INTR

N

P

412

Microprocessor Bus

HOLD ‘l‘—i‘[—ms
HLOA 55 2] -04rur YOS
12
80286
HEADY 63 | peapy H/T0 |67 W/ 1D
ar bulo, g 1
RESET 28 | preer 51| 4 51
vey _ 1A78 o coo/TNTL] 66 coo/TnTa
10K BUSY 54 gusy a23| 7 e BUS
a22 8
ERAOR_ 53 | TAAmA Azi [30 :g BUFFER
a20 [1 NG
PEACK _ 6 |5EacK as9 [13 A38
A8 3 AlB
LOTK__ 68) rgex A17 [14 a7
416 [15 A6
PEREA 64| pepeg
P Ll Ago
Tox 330
SHi1-1
Al5 |16 B 11 A4S
Al |17 Al4 +5v
I 59 AL3 | 1B Al
R4 NMI a1z [1g Al 4
A11 [20 Al SWe-3
R77 a10 21 AL
azo a0a (23 A00 409 £]
a08 [23 A0B A08
4
SWa-4
207 |24 A07 13
A06 |25 ADE
INTR 57| yuree a05 |26 aD5] A05
a04 |27 AD3 AD4
4 Ap3 |28 A Is
SH3-4 aga (32 AQ Sh2-5
a01 |23 &0
13 200 24 AC 12
1
d
SWa-6
+5Y 11
RLDA 654 0, N D15 110
HOLO B4]ugp D14 |43 D SH2-7
D13 |47
032 [45 D D1z 7
D13 [43 D
pig [21 Di0 SW2-8
Hiog %0 oos [28 £Og Dos B g
=& sy 8y EY) 008 008
+5v [13 62 4ov oos
3 [enp
35 | GNp
80 1 Gno
50 D07
pp7 |50 D07
cos |48 DOE
521 cap oos |2 5 005
5 o4 004 |44 CIE I
aWI-3 Do3 |42 D03 | Sh3-1
.047uF ooz [49 DG
44 oos 28 00 16
poo |38 DOD
Uis

Figure 4-2: Microprocessor Bus Functional Test

Microprocessor Bus

Programmed Functional Test . 4.1.5.

4-14

The Demo/Trainer UUT is determined to be good if functional
tests for the Microprocessor Bus, ROM, RAM, Parallel 1/O,
Serial I/0O, and Video Output functional blocks all pass. In order
to make the testing as efficient as possible, the buffered bus,
address decode, and ready circuitry should be exercised early in
the testing. Furthermore, this testing should happen quickly,
minimizing the amount of clipping of I/O modules to
components.

To meet these goals, the Microprocessor Bus functional test
program, test_bus, checks the microprocessor bus up to the
buffers and also performs an access to every decoded address
space (such as ROM, RAM, or Video I/0). These accesses
indirectly check the Buffered Bus, Address Decode, Ready, and
Interrupt Circuit functional blocks. If a ready or active interrupt
problem exists, these accesses to the decoded address spaces
will result in an improper ready or active interrupt condition that
can be detected by the test.

The test_bus program also performs a check for bus contention.
Bus contention occurs when a component continually outputs
onto the data bus and it is usually caused by faulty enable inputs
into a component. The test_bus program detects bus contention
by reading at a spare address location, which is decoded and can
be read from but has no component located at that address to
output data onto the data bus. In normal operation, only high
bits (logic 1s) are returned on the data bus when the spare
address is read. When bus contention drives data bits low, the
read at the spare address will detect the problem. In order to
detect bus contention that drives data bits high, the test bus
program writes all-zero data to RAM and then reads the RAM,
If the data read is not all-zero, either the RAM is bad or there is
bus contention. To make sure the problem is bus contention, the
test_bus program reads from two other components on the data
bus that are decoded separately. The fest bus program uses the
ROMs from bank zero and the ROMs from bank 1. If both
ROM banks read zero data correctly, the problem is assumed to
be a RAM problem (when bus contention occurs, most of the
components on the bus will fail), When both ROM banks read

Microprocessor Bus

zero data correctly, the test_bus program concludes that the

problem is not bus contention and Ieaves further fault isolation to
a later test,

If a bus contention problem is detected, a separate bus
contention test program called #s¢ conten is executed (see
Appendix C for a listing of this program). The tst conten
program tests the enable lines for each component that is
connected to the data bus. All other information about good or
bad data and address lines is ignored by the bus contention
program.

The entire test bus functional test runs quickly, but it detects
most kernel faults not in the RAM or ROM components.

program test bus

! FUNCTIONAL TEST of the Microprocessor Bus,

1
! 1
! This program tests the unbuffered microprocessor bus, performs an i
! access at each decoded address of the buffered bus, and checks the !
! data bus for bus contention (where a component outputs onto the data '
! bus at incerrect times}, If bus contention is detected thep the)
! program TST_CCNTEN s executeg, TST_CONTEN checks for incorrect !
{ enable line conditions on all the components on the buffered data bys.!
1

! TEST PROGRAMS CALLED:
tst_centen (addr, data_blits} Test for bus contentiecn on
the data bus by checking the
enable lines of all devices
on the data pus.

ZERO AT ROMO Address of zero data in ROMO
IC BYTE 1/0 BYTE address specifter
MEM_WORD MEMORY WORD address speclfler !

! Logal Variables Modified:
X value returned from a read

1

r

1

t

1

t

) 1
! Local Constants: !
1

r

1

!

1

1

1

1
1

1

!

1

!

r

1

! ZERO_AT ROM! Address of zero data in ROML
1

t

]

1

1

1

declare numeric 2ERO_AT ROMO = $SEO02A !Location in RGMO Wwhere 0 exists
declare numeric 2ERO_AT ROML = $F0022 !Tocation in ROM1 where 0 exists

Microprocessor Bus

I Setup Statements

podsetup 'enable ~ready' "on"

podsetup ‘report forcing' “on®

I0 BYTE = getspace space "i/o", size "byte"

MEM WORD = getspace space "memory", size "word"

! Test the Unbuffered Microprocessor Bus.
testbus addr 0

! Test the Extended Microprocessor Bus and Address Decoding.
setspace (MEM WORD)
read addr 0
read addr $10000

write addr $20000, data O
read addr $30000

RAM BANK 0

RAM BANK 1

VIDEQ RBM (wrlte only}
INTERRUPT POLL

read addr $E0000 ROM BANK O
read addr $F0000 RCM BANK 1
setspace {IO_BYTE}

read addr 0 ! VIDEC SELECT
read addr $2000 1 RS232 SELECT
read addr $4000 T PIA SELECT

I Test for Bus Contentlon driving lines low by accesslng unused address space

setspace (MEM WORD}
X = read addr $50000 ! SPARE-2 ADDRESS SPACE
if x <> SFFFF then
execute tst_conten{ $50000, cpl({x) and SFFFF}
return
end if

! Test for Bus Contentloa driving lines high by reading and writing RAM
! If failure then check for bad RAM by reading zeros from 2 other devices.

wrlte addr 0, data Q ! WRITE and READ RAM addr 0
% = read addr 0 { If fails then check for bad RAM
if x <> 0 then { by reading 0's at ROMO and ROML

if {read addr ZERO AT ROMO) <> 0 then
1f (read addr ZERC AT_RCM1} <> D then
execute tst_conten({ G, x}
return
end if
end Lf
end Lf

end program

4-18

LT

—

Microprocessor Bus

Stimulus Programs and Responses 4.1.6.

Stimulus programs are TL/1 programs that are executed by GFI
for the purpose of troubleshooting faulty circuits. A stimulus
program response file should be associated with each stimulus
‘program in order to store the known-good response for each
node to be stimulated by the stimulus program. In this
functional block, the microprocessor is the only component and
its outputs are stimulated in three groups: address lines, data
lines, and control lines.

Figure 4-3 is the stimulus program planning diagram for the
Microprocessor Bus functional block. It shows three stimulus
programs that are used to exercise the outputs in the
microprocessor functional block. These stimulus programs (and
their associated response files by the same name) exercise and
characterize nodes to be measured in the Microprocessor Bus
functional block and in other functional blocks as well.

There are several rules for stimulus programs and response files.
One is that only outputs are characterized. Another is that data
must be characterized while flowing in only one direction.
Therefore, the data_out stimulus program measures only data
coming out from the microprocessor. Other stimulus programs
will measure data coming in to the microprocessor.

After the stimulus program planning diagram, the stimulus
programs, and the response files, there is a summary page in the
form of a UUT Directory. It shows the entire set of stimulus
programs, response files, and other files needed to perform
testing and troubleshooting on this functional block. The
summary page also shows where each of the stimulus programs
and response files can be found in this manual. You will notice
that each stimulus program and its associated response file (with
the same name) are shown in only one location, although the
pair will often be used with more than one functional block.

4-17

Microprocessor Bus

Stimulus Program Planning

PROGRAM: ADDR_OUT

EXERCISES ALL ADDRESS LINES FROM THE
MICROPROCESSOR

MEASUREMENT AT:

uU14-1

1114-34,33,32,28,27,26,25 24
U14-23,22,21,20,19,18,17,16
u14-1514,13,12 .

PROGRAM: DATA.QUT

EXERCISES ALL DATA LINES AS QUTPUTS FROM
THE MICROPROCESSOR

MEASUREMENT AT:

U14-36,38,40,42,44,46.48 50
UH4-37,39,41,43,45,47 149 51

READY INTERALPT
CIRCUIT CLOCK AND RESET CIACUTT
B0 ER ‘READY CLK RESET INTA

4-18

Microprocessor Bus

HOLO
TEST i c1a g
HL D4 ACCESS o] .0arr YrO®
12
¥
80288
READY 63 'AEany H/TO |87 M/IT
CLK 31 gLk SoLs 50
AESET 29| qeeer 1| a g1
oy . aR79 con/INTA| 86 COD/INTA
10K BUSY___54|apsy a23| 7 e 8US
a2 [B P
ERRDA 53 | £5AmR a2t 110 p BUFFER
A20 NG
PEACK 6 |PEack IYEREE a19
— A18 [43 A18
LOCK 6B {peR A17 [14 AL7
416 [15 A6
PEREG__ 81| pepeq
+5v _mim,\al 80
10K a3
SW1-1
A15 116 B 11 ai1s5
Al4d 7 Ald +5v
MMI 50 33 [1B n
¢ ——{ NMI at2 [18 & a
a11 [B0 A aWz-3
77 A10 [21 A
330 AD9 [32 A ADg 5
a0a [23 A08 408
4
SWa-4
A07 |24 AO7 13
408 [28 ADS |
INTA 57 | 1eta a05 [25 A0S A05
a0a |27 AD 2 404
4 A03 | 28 A s
SW3-a aga [32 A SHa-5
Aoy [38 A
13 00 A 12
BHE
5
SHE-6
+5V 11
HLDA HLOA D15 |5 018 110
HOLD 84| pyoip D1z [49 Di4 W27
pi3 |47 01 }
D12 [48 D3 D12 7
D13 143 D1
010 |41 D10 | sv2-8
. oo |29 D03 pog 5
SHL-B gy 30 {45y ooa 37) T °
+6v [11 62| soy
8
GND
35 | gnD
80 | gnp
Doy |80 . g7
605 |48 oos
-1 P Dos |48 D05 DoS
S ca Doa 44 D04 1
w3-3 Do3 |42 003 | SK3-1
,047uF ooz -é—_‘ goa
14 801 D01 18
oop (38 000]
U14

Figure 4-3: Microprocessor Bus Stimulus Program Planning

4-19

Microprocessor Bus

program addr_out

STIMULUS PROGRAM to wiggle all address lines from the uP.

Stimulus programs and response files are used by GFI to back-trace
from a falling node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
|
1
1
1
t
]
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT, These programs create activity with !
or without the ready circult working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY jmput !
tc the pod. The B0G286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronlzaticn with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover{) program is executed to 1
resynchronize the bus contreller and the ped. !

I

I

TEST PROGRAMS CALLED: !
recover {) The 80286 microprocessor has a!l
bus controller that 1s totally!

separate from the pod. In !

some cases the pod can get oul!

of sync with the bus control- !

ler, The recover program !

resynchronizes the ped and the!

bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}

1
1
1
1
local Variables Modifled: 1
devnama Measurement device 1
1
1
t
t

Global Variables Modified:
recover times Reset
111

! Maln Declarations 1
RSN AR A e N e N S S N N N N SN NSNS

declare giobal numerlc recover times

(continued on the next page)

Figure 4-4: Stimulus Program {addr_out)

4-20

Microprocessor Bus

1
! FAULT HANDLERS:
1

handle ped timeout_enabled line
recover {)

end handle

handle pod_timecut_recovered
recover ()

end handle

recover_times = 0
! Let GFI determine the measurement device.

1lf {gfi control) = "yes" then
devhame = gfl device

else
devname = "/modl®

end 1f

print “Stimulus Program ADDR OUT"

! Set addressing mode and setup measurement device.

podsetup ‘enable ~ready' "off"
podsetup 'report power' “off"
podsetup 'report forcing' "off"
podsetup 'report intr' "off"
podsetup 'report address' "offn
podsetup 'report data' “off®
podsetup 'repert control' "off"
mem_byte = gelbspace space "memory", size “byte"
setspace ([mem_byte }

reset device devname

sync device devname, mode "pog"
syne device “pod", mode "addr"

I Present stimulus to UUT,

arm device devname ! Start response capture.
rampaddr addr 0, mask 51F
rampaddr addr 0, mask $1F0
rampaddr addr 0, mask $1F0Q
rampaddyr addr 0, mask 51F000
rampdata addr $20000, data O, mask $FO
rampaddr addr $30000, mask 5F00
rampaddr addr $E0000, mask $1F000
readout device devname ! End response capture.

podsetup 'enable ~ready' "on"
end program

Figure 4-4: Stimulus Program (addr_out) - continued

4-21

Microprocessor Bus

STIMULUS PROGRAM NAME:
DESCRIPTICN:

Node Learned
s5ignal Src With
U16-19 1/0 MODULE
Ule-16 PROBE
Ui6~16 I/0 MODULE
Ul6-15 PROBE
U16-15 I/0 MODULE
Ule-12 PROBE
Ule-12 I/0 MCDULE
Ulé-9 PROBE
Ul6-9 1/0 MODULE
Ul6-6 1/0 MCDULE
Ul6-5 1/0 MODULE
Ul6=2 1/0 MODYLE
72=-19 1/0 MODULE
Uz-16 1/0 MODULE
uUz-15 I/0 MODULE
uz-12 1/C MODULE
Uz-9 1/C MODULE
Uz-6 I1/C MODULE
u2-5 I1/0 MODULE
uy2-2 1/0 MODULE
U14-1 PROBE
Ul4-1 I/0 MODULE
U14-34 PROBE
U14-34 I/0 MODULE
U14-33 PROBE
U14-33 I/0 MODULE
U14-32 PROBE
U14-32 1/0 MODULE
Ul4-28 PROBE
U14-28 1/0 MODULE
U14-27 PROBE
014-27 1/0 MODULE
U14=-26 PROBE
Ul4-26 I/0 MODULE
U14=-25 PROBE
U14-25 I/0 MODULE
U14-24 PROBE
Ul4-24 I/0 MODULE
U14-23 PROBE
U14-23 1/0 MODULE
U14-22 FROBE
Ul4-22 I1/C MODULE
Uld-21 PRCBE
Ul4=-21 1/0 MODULE

4-22

ADDR_OUT

sIG

DEBS
4A68
4h68
421D

Response Data

Async €lk Counter

WL LVL Mode

FHEERERERRERRRRRRERRRRE RS Me e R B R R R RS e e s

COoOO0CCOo0O0000O0OoO0000000000000LL 000000000 DOC

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

SIZE: 1,194 BYTES
Priority
Counter Range Pin

(continued on the next page)

Figure' 4-5: Response File {addr_out)

Microprocessor Bus

PROBE
I1/0 MODULE
PROBE
I/0 MODULE
FROBE
1/C MGCDULE
PROBE
I/0 MODULE
PROBE
I1/0 MODULE
PROBE
I/0 MODULE
PROBE
I1/0 MODULE
PROBE
I/0 MODULE
PROBE
1/C MODULE
1/0 MODULE
I/0 MODULE
1/0 MODULE
1/C MODULE
1/0 MODULE
1/0 MODULE

3890
3B%0
09E8
09E8
oDac
opac
56D3
5603
9CA7
SCA7
8E87
8E87
A70C
A70C
3951
3951
3951
3951
8E87
A70C
3951
3951
6OCD
B724

HH»—-HHHHHHHHMH»—-HI—-HHHHHHHH
OOQQOOOODOODOOOQOOOOOOOO

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-5: Response File (addr_ out) - continued

4-23

Microprocessor Bus

pregram data out

I!Irllrlllll]![]”r1ll1llr1Ir!llllllr1 !]

STIMULUS PROGRAM for data bus buffers U3 and U 23.

Stimulus pregrams and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response flle contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
! 1
1 1
I 1
1 1
1 1
I I
! I
1 This stimulus proegram is one of the programs which creates activity !
1 in the kernel area of the UUT. These programs create activity with 1
1 or without the ready circuit working properly. Because of this, all !
1 the stimulus programs ln the kernel area must disable the READY input !
1 to the pod, then perform the stimulus, then re-enable the RFADY input !
1 to the pod. The 80286 microprocessor has a separate bus coatroller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
I is out of synchronlzatlon. The recover{() program is executed to !
! resynchronize the bus contreller and the pod. !
t : 1
1
b
t
t
!
t
I
I
|
1
1
1
1
1
t
1
1
1
1

! TEST PROGRAMS CALLED: !
recover {} The 80286 microprocessor has al

bus controller that is teotally!

separate from the pod, In t

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus contreller, !

! GRAPHICS PROGRAMS CALLED:
{none}

1
i
1
. - 1
! Local Variables Modified: 1
devname Measurement device 1
1
T
1
1

! Global Variables Modified:
recover_times Reset to Zero

declare global numeric recover_times

(continued on the next page)

Figure 4-6: Stimulus Program {data_out)

4-24

Microprocessor Bus

I FAULT HANDLERS: |

!!!!!!!!!l!!!!!!!!!!!!!!!!!!!l!!!!!!!!l!!!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!l!

handle pod_timeout_enabled line
recover {}

end handle

handle pod_;imaout_;ecovereda
recover (}

end handle

1
! Main part of STIMULUS PROGRAM !
|

R e NN R R RN NN RN NSRS R R NN NN AT IRTIRNS IR I T

recover_times = 0
! Let GFI determine the measurement device.

if {gfi control) = "yes" then
devname = gfi device

else
devname = "/mod1"

end if

print “Stimulus Program DATA_OUT"

! Set addressing mode and setup measurement device.

podsetup ‘enable ~ready' “offn
podsetup ‘report power' "off"
pedsetup 'report forcing' “offn
podsetup ‘report Intr' “offw
podsetup 'report address' “off"
podsetup "report datat “offr
podsetup 'report control' "off"
setspace space (getspace space "memory®, size "word™
reset device devname

sync device devname, mode "pod"
sync device "/pod", mode "data"

! Present stimulvs to UUT.

arm devlice devname ! Start response capture.
rampdata addr 0, data 0, mask $FF
rampdata addr 0, data 0, mask SFFO0

readout device devname ! End response capture,

podsetup ‘enable ~ready*' “on"
end program

o

Figure 4-6: Stimulus Program {data_out) - continued

4-25

Microprocessor Bus

STIMULUS PROGRAM NAME: DATA OUT
DESCRIPTION:

Node
Signal Src

U3-11
U3-11
U3-12
u3-12
U3-13
U3-13
U3-14
U3-14
u3-13
U3-15
U3-16
U3-16
03-17
U3-17
U3-18
U318
U23-11
023-12
023-13
U23-14
023-15
023-16
023-17
U23-18
U14-51
U14-51
UL4-49
Ul4-49
U14-47
U14-47
014-45
014-45
U14-43
014-43
Ul4-41
F14-41
U14-39
U14-39
014-37
014-37
U14-50
Ul4-50
014-48

4-26

SIZE:
Response Data
Learned Async Clk Counter
With 8IG IVL IVL Mode Counter Range
PROBE AAB] 1 0 TRANS
I/0 MODULE AAG1 1 o TRANS
PROBE 99DF 1 0 TRANS
I1/C MODUGLE 93DF 1 0 TRANS
PRCBE 8793 1 O TRANS
I/0 MODULE 8793 1 0 TRANS
PROBE E618 1 0 TRANS
I/0 MODULE E618 1 0 TRANS
PROBE 8793 i O TRANS
1/0 MODULE F513 1 O TRANS
PROBE 4FF8 1 O TRANS
I/0 MODULE 4FFB 1 O TRANS
PROBE 3600 1 0 TRANS
1/0 MODULE 3600 1 0 TRANS
PROBE R25% 1 0 TRANS
I/0 MODULE B259 1 0 TRANS
I/0 MODULE 96EC 1 0 TRAENS
I/0 MODULE 725B 1 0 TRANS
I/0 MODULE ESED 1 0 TRANS
1/0 MODULE 5BEO 1 0 TRANS
I/0 MODULE 7E25 1 0 TRANS
I/0 MODULE 85EA 1 O TRANS
I/0 MODULE 77C7? 1 0 TRANS
I/0 MODULE 6EBE 1 0 TRANS
PROBE 6EBE 1 0 TRANS
I/0 MODULE 6EBE 1 0 TRANS
PROBE 71c7 1 0 TRANS
I/0 MODULE 77C7 1 0 TRANS
PROBE B5EA 1 O TRANS
I/0 MODULE #5EA 1 O TRANS
PROBE TE25 1 O TRANS
I/0 MODULE 7E25 1 0 TRANS
PROBR 5SBEQ 1 0 TRANS
I/C MODULE 5BED 1 0 TRANS
PROBE ESED 1 0 TRANS
I/0 MODULE ESED 1 0 TRANS
PROBE 725B 1 0 TRANS
I/0 MODULE 725B 1 0 TRANS
PROBE 96EC 1 0 TRANS
T/0 MODULE 96EC 1 0 TRAKS
PROBE B259 1 0 TRANS
1/0 MODULE B259 1 O TRANS
FROBE 3600 1 G TRANS

{continued on the next page)

Figure 4-7: Response File {data_out)

982 BYTES

Priority
Pin

T

Microprocessor Bus

I/0 MODULE 3600 1 0 TRANS
PROBE 4FFB 1 0 TRANS
1/0 MODULE 4FFB 1 0 TRANS
PROBE F513 1 0 TRANS
I/0 MODULE F513 1 & TRANS
PROBE . E618 1 0 TRANS
I/0 MODULE E618 1 0 TRANS
PROBE 8793 1 0 TRANS
I/0 MODULE 8793 1 0 TRANS
PROBE 99DF 1 0 TRANS
I/0 MODULE 99DF 1 0 TRANS
PROBE ARB1 1 0 TRANS
I/0 MODULE AR61 1 © TRANS

Figure 4-7: Response File (data_out) - continued

4-27

Microprocessor Bus

program ctrl outl

BEEEIRERRRRNERNEES!

1 1 1
STIMULUS PROGRAM for bus controller, Ul5 & uP ctrl lines,

stimulus programs and responsé flles are used by GFI to backtrace
t from a falling node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good resppnses for
t the outputs in the UUT that are stimulated by the stimulus program,

1

! r
1 1
! !
t 1
r 1
r 1
r 1
t This stimulus program 1s one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with !
1 or without the ready clrcult working properly. Because of this, all !
1 the stimulus programs in the kernel area must disable the RERDY input !
1 to the pod, then perform the stimulus, then re-enable the READY input !
| to the pod. The 80286 microprocessor has a separate bus contreller; !
! for thils reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronlization with the ped. Twe fault !
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover(} program is executed to !
! resynchronize the bus controller and the pod. !
1 I
1
1
t
1)
1
1
1
|
i
1
1
1
1
1
1

! TEST PROGRAMS CALLED: L4
recover §] The 80286 microprocessor has al

bus controller that is totally!

separate from the pod. In 1

some cases the pod can get out!

of sync wlth the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

! GRAPRICS PROGRAMS CALLED:
{none)

! Global Variables Modified:
recover times Reset to Zero

handle pod_timeout enabled line
recover ()
end handle

{continued on the next page)

Figure 4-8: Stimulus Program (ctr{_out1)

4-28

.

Microprocessor Bus

handle pod timeout_recovered
recover {)

end handle

handie pod_timeout no clk

end handle

recover_times = 0
! Let GFI determine the measuremeht device.

1f (gfi control} = “yes" then
devname = gfi device

else
devname = "/modi”

end 1f

print “Stimulus Program CTRL_QUT1"

! Set addressing mode and setup measurement device.

podsetup "enable ~ready' “off"

podsetup ‘report power' "off"

podsetup 'report forcing' “off"

podsetup 'report intr' “off®

podsetup 'report address' “off"

podsetup 'report data' "off"

podsetup 'report control' "off"

lo_byte = getspace spate "i/o", size "byte"

mem word = getspace space “memory®, slze *word"
reset device devname

sync device devname, mode “"pod"

syne device "/pod*, mode "addr™

old_cal = getoffset device devname

setoffset device devname, offset {1000000 - 42)

! Present stimulus to UUT,

amm device devnama ! Start response capture.
setspace (mem word)
rampaddr addr $E0000, mask $1E
rampdata addr $50000, data 0, mask 3F
setspace (ic_byte)
rampaddr addr 0, mask $5F00
rampdata addr $2000, data O, mask $F
readout device devname ! End response capture.

setoffset device devname, offset old cal
podsetup 'enable ~ready' “on%
end program

Figure 4-8: Stimulus Program (ctr{_out1) - continued

4-2¢

Microprocessor Bus

STIMULUS PROGRAM NAME: CTRL QUT1
DESCRIPTION:

Node
Signal Src

Ul4-5
U14-5
Ul4-4
U1l4-4
Ul4-66
Ul4-66
Ul4-67
Ul4-67
U45-8
Uls-16
U57-8
022-5
U22-6

4-30

SIZE:
Response Data

Learned Async Clk Counter

With sIG LWVL LVI, Mode Counter Range
PROBE 5632 10 TRANS
I/0 MODULE 5632 10 TRANS
PROBE ECCF 10 TRANS
I/0 MODULE ECCF 10 TRANS
PROBE B70D 10 TRANS
1/0 MOCDULE B70D 10 TRANS
PROBE ODFO 10 TRANS
1/0 MODULE ODFO 10 TRANS
1/C MODULE 92FB 10 TRANS
I1/0 MODULE 2BES 10 TRANS
1/ MODDLE 9118 10 TRANS
I/0 MODULE B70D 10 TRANS
1/0 MODULE ODFO 190 TRANS

Figure 4-9: Response File (ctrf_out1)

267 BYTES

Pricrity
Pin

‘/..m‘

Microprocessor Bus

Summary of Complete Solution for
Microprocessor Bus 4.1.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Microprocessor Bus functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file,

UUT DIRECTORY
{Complete File Set for Microprocessor Bus)
Programs (PROGRAM):
TEST_BUS Functional test Section 4.1.5
ADDR_OUT Stimulus Program Figure 4-4
DATA_OUT Stimulus Program Figure 4-6
CTRL_OUT1 Stimulus Program Figure 4-8
LEVELS Stimulus Program Figure 4-92
Stimulus Program Responses (RESPONSE):
ADDR_QUT Figure 4-5
DATA_OUT Figure 4-7
CTRL_OUTI1 Figure 4-9
LEVELS Figure 4-93
Noede List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-31

Microprocessor Bus

(This page is intentionally blank.)

4-32

ROM

ROM FUNCTIONAL BLOCK 4.2,

Introduction to ROM 4.2.1.

The typical ROM block consists of the ROMs, an address path
from the microprocessor to the ROMs, a data path from the
ROM s to the microprocessor, and a ROM-select scheme. There
are often hardware buffers separating the address and data paths
from the microprocessor and ROMs; your UUT may or may not
include these buffers. A simplified diagram of a typical ROM
functional block is shown in Figure 4-10.

Figure 4-10 shows the microprocessor's Read/Write strobe as
an input to the ROM-select circuitry. Many UUTs use the
Read/Write sirobe to make sure the ROM is selected only during
Read cycles. This prevents potential data-bus contention
between the ROM and the microprocessor during erroneous
Write cycles to the ROM's address space.

Considerations for Testing and
Troubleshooting 4.2.2,

Testing ROM

To test ROM thoroughly, every data bit read from the ROM
(i.e., every cell in the ROM) must be verified. Of course, you
could compare the contents of every location with known-good
contents, but this would be slow and would require that the
9100A/9105A store the known-good contents of all ROM chips.
In practice, it is easier and faster to read every ROM address,
compress the data into a CRC signature, and compare this
signature with the signature from a known-good UUT.

The 9100A/9105A's built-in ROM test performs the operation
described above. The test is first used to capture the signature

4-33

ROM

4-34

Micro-
processor

ROM(s}

'\ Data
< Data Bus y Buffor
'\ Address l\
Address Bus / Buffer >
Decode ROM Chip Select
R/W Strobe & Select

Figure 4-10: Typical ROM Block

T

ROM

response of a known-good UUT. Then, the test can be
performed on a suspect UUT.

Refer to Section 6.2.3 of the Technical User's Manual for more
information about the built-in ROM test.

ROM-Test Diagnostic Messages and Troubleshooting
Techniques

If the built-in ROM test finds a fault, one of several diagnostic
messages will be displayed. Figure 4-11 summarizes the types
of conditions reported, with example messages. Here are some
details about the various types of messages:

Incorrect Signature

This means that the ROM test could not identify the data or
address lines at fault. It may indicate that the ROM chip itself is
bad or that the wrong ROM chip is inserted. However, it could
also indicate faulty ROM-select circuitry, especially if the
circuitry allows ROM to be selected over only part of the proper
address range. This type of fault would allow the test to read
enough addresses to generate a signature, albeit an incorrect one.
Here are some troubleshooting tips for this situation:

* Check that the correct ROM chip is plugged in.

* Perform the test on a known-good UUT with an I/O

module clipped over the ROM chip. Write down the
signatures of the individual lines from the /O module.

¢ Perform the test on the suspect UUT, again with the I/O
module clipped over the ROM chip.

* Compare the signatures for the individual lines. Trace any
faulty inputs back toward the microprocessor, giving
priority to tracing faults in chip-select lines and then in
address lines.

4-35

ROM

Signal Example
Group Fautt Message
ROM Chip bad data cells read incorrect sig XXXX ez(pected YYYY

ROM-Select Lines

Data Lines

Address Lines

Undetermined
Fault

open or stuck

open or stuck

tied

open or stuck

tied

read incorrect sig XXXX expected YYYY
all ROM data bits stuck low

all ROM data bits stuck high

data line <name> stuck high
data line <name>stuck low

data line <name> tied to data line <name>

address line <name>shick

address line <name>tied to address line <name>

read incorrect sig XXXX expected YYYY

Figure 4-11: Conditions Reported by ROM Test

4-36

e

ROM

All Data Bits Stuck High or Low

This means that the ROM test found all ones or all zeroes on
every data line throughout the test. Most probably, it means that
the ROM chip is not being properly selected, that the ROM chip
is missing (or umprogrammed), or that an intervening bus buffer
is faulty,

To troubleshoot these faults, first check that the ROM chip is
present and that it is the right part. If so, you can then trace the
ROM-select path back to the microprocessor. Use a
9100A/9105A read operation on the address at which the failure
occurred as a stimulus for the probe or I/O module. If the ROM.-
select path is good, verify that the address and data buffers are
good.

Data or Address Line Stuck High, Stuck Low, or Tied

When an individual address or data line is at fault, use the probe
to trace from the ROM socket back to the microprocessor and
compare each node response with the known-good response.

If the faulty line is an address line, synchronize the probe to
address and stimulate the line with the STIM key using the
TOGGLE ADDR command on the operator's keypad. Use the
LOOP key while probing to verify both low and high levels at
each point on the address line until the fault is isolated.

If the faulty line is a data line, synchronize the probe to data, run
a ROM test and press the LOOP key to repeat the ROM test
while probing. Again, look for both low and high levels until
the fault is isolated.

4-37

ROM

Additional Considerations

4-38

Here are some additional suggestions to consider when testing
and troubleshooting ROM: :

Multiple ROM Chips: If you have more than one
ROM chip on your UUT, test each chip separately. This
will speed the troubleshooting process if a fault is found.

If there is more than one ROM chip on the same data bus
(or, in systems wider than 8 bits, on the same portion of
the data bus) be careful that an erroneously enabled output
buffer of one ROM is not corrupting the test results for
another ROM. For example, consider an 8-bit
microprocessor system with two ROM chips, A and B, in
which chip A's output-enable input pin is tied low (a
fault). Chip A will pass its ROM test, because the data in
the ROM can still be read with the output-enable line tied
low. ROM chip B, however, will fail its test with an
incorrect-signature fault, even though there are no faults
directly associated with chip B, When chip B is read by
the test, the fault on chip A causes both ROMs to contend
for the data bus, resulting in an incorrect signature. See
the microprocessor bus functional block for suggestions
on how to check for bus contention,

Unprogrammed ROM: Be sure that the ROM being
tested has been programmed. An unprogrammed ROM
may result in an "all ROM data bits stuck high" or an "all
ROM data bits stuck low" message during a ROM test.

Data Tied to Address: If a ROM test results in a bad
signature, it is a good idea to make sure that a data line is
not tied to an address line. You can do so by clipping an
I/0 module to the ROM chip that produced the incorrect
signature.

If address line or data line failures are identified by a ROM
test but not by a BUS test, the fault is on the ROM side of
the address or data buffers.

ROM

* Proper Sync Mode: Generally, the data sync mode
should be used to trace back faults in the ROM-select path,
even though the ROM-select signal may be created from
address lines. This is because the ROM-select signal
should normally be asserted at the time the MiCTOprocessor
reads in data from the ROM. This is also normally the
situation for probing the address signals at the ROM
socket.

ROM Example 4.2.3.

The operating system code for the Demo/Trainer UUT is stored
in four 32K x 8 EPROMs, U27, U28, U29, and U30, shown in
Figure 4-3. Since a 16-bit system is used, ROM is organized as
64K x 16 bits. The ROMO bank covers the even addresses
E0000 through EFFFE and is contained in U29 and U30. The
ROMLI bank covers the even addresses FO000 through FFFFE
and is contained in U27 and U28. Both banks can only be
accessed in 16-bit mode. IAO! is connected to AO on the
ROMs, and the least significant address bit, IAQO, is not
connected to ROM. IA00 is always low in word accesses.
A20-A23 are not used. At reset, 80286 code execution begins at
the reset address (FFFFF(). ROM accesses do not require wait
states.

Keystroke Functional Test 4.2.4.
Use the ROM TEST key to enter the following commands,
and compare the measured signature with the response table

in Figure 4-12.

GET SIG ROM REF U2% ADDR EQ000 UPTO EFFFE ...
. DATA MASK FF ADDR STEP 2
(ADDR OPTION: MEMORY WORD)

4-39

ROM

4-40

The measured signature (shown on the operator's display)
should be 8E6E.

GET SIG ROM REF U30 ADDR E0000 UPTO EFFFE
. DATA FF00 ADDRSTEP 2
++. {ADDR QPTION: MEMORY WORD),

The measured signature (shown on the operator's display)
should be F387.

GET 3IG ROM REF U27 ADDR F0000 UPTO FFFFE
. DATA FF ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be F387.

GET SIG ROM REF UZB ADDR F(0000 UPTO FFFFE
. DATA FF00 ADDRSTEP 2
(ADDR OPTION: MEMORY WORD}

The measured signature (shown on the operator's display)
should be 8EGE.

P

ROM

(This page is intentionally blank.)

4-41

ROM

Keystroke Functional Test

CONNECTION TABLE
TEST ACCESS SOCKET TEST ACCESS SOCKET
RESPONSE
ROM CHIP ROM SIGNATURE
uz9 BEGE
30 F3a7
ez Faa?
uzs BEGE
READY FERTY BUS
CIRCUIT DCESSOR BUFFER
]
ADDRESS -
DECODE _

4-42

ROM

27288 27286
A01 10 13 AD1 3
- a0 A0
AOZ B,y ADZ a1
AU 8] ,o AD3 a2
404 7] 49 [Ta04 a3
ACE 6] 4a 1405 6],
AG6 5] .g ADG _&| e
[Ta07 4} a0 (1207 " a4e gs
[Ta0e ADE 3{,2 o7 [38 1007
HIE | 1A0S 25],5
A AL0 74,0
ALl 21,4 LYFRNETY pyr
AL2 237,44 Al2 23 1a11
A A12 LYENNE] Pee:
Ald 2B,,3 Ald TG ,4q
ALS 27,4, [1618 271 .54
35V 1T vop 18V vpp
29 20TE
22 e
a 3
W4-3 \SW1-2
AQL 1
15 |]
i Wz o
4038
| 1A04 7
05 &
; [Ta06 s
+3v A74 [1a07
3 AD8__ 3
a7 ¥ x
k 285 [Ta09 298
24 A0 34
23 All 21
23 A12 23
2] ag2 A3 2
Ls3z2 Lg32
AEAD 4 Ald 26,43 READ 4 Ald Z6
5 a || [Baa 271 1% 51 uas L& [Ta18 57
5V 1 vop By 1]
FOHL ECNpL Y)y
EE) [22
i) [ves |
ROAOADY
DATA & ADDRESS BUS

Figure 4-12: ROM Functional Test

4-43

ROM

Programmed Functional Test 4.2.5.

4-44

The test_rom program is the programmed functional test for the
ROM functional block. It uses the zestromful command to test
the ROMs. This command will generate one of seven built-in
fault conditions if testromful fails. The test_rom program then
handles all seven built-in fault conditions and categorizes them
into one of two new fault conditions called rom_comp for a
component failure or rom_address for an address failure. The
seven built-in testramfull faults are redirected as follows:

New Fault Condition Built-in Fault Condition

rom_comp rom_sig_incorrect
rom_data_high_tied_all '
rom_data_low_tied_all
rom_data_fault
rom_data_data_tied

rom_address rom_addr_addr_tied
rom_addr_fault

The new fault condition rom_comp uses the gfi test command to
clip the /O module onto the ROMs and to test all inputs and
outputs of a ROM. If a failure is detected, the test passes control
to GEL. GFI backtraces to find the circuit problem that is
causing the failure.

The new fault condition rom_address checks the address bus,
and if a failure is detected control is passed to GFI. GFI then
backtraces to the circuit problem which is causing the failure.

o

ROM

program test_rom

! TI/1 testromfull command is used to test the ROMs. If the ROMs are
! found to be faulty, then one of seven built—-in fault cenditions is

I
1
This program tests the ROM functional block of the Demo/Trainer. The !
1
t
! generated. 1

! Setup.
podsetup 'enable ~ready' “on"
pedsetup ‘report forcing' “on®
setspace space (getspace space "memory", size "word")

! Main part of Test.

testromfull addr $FQ000, upte SFFFFE, addrstep 2, sig $156F
testromfull addr $EQ000, upto $SEFFFE, addrstep 2, slg $B61E

end program

4-45

ROM

Stimulus Programs and Responses 4.2.6.

4-48

Figure 4-13 is the stimulus program planning diagram for the
ROM functional block. The outputs in the ROM functional
block are the outputs of U45 and the outputs of the ROM chips
onto the data bus.

The stimulus programs to exercise these outputs are rom(data
(which reads data from U29 and U30), rom! data (which reads
data from U27 and U28), and decode (which accesses each
decoded address space in the Demo/Trainer UUT).

One of the rules for stimulus programs is that when dealing with
a data bus, every component that is decoded separately to output
onto the data bus must have a separate stimulus program to read
data from that component. For this reason, two stimulus
programs are required: rom0 data and roml daia.

_—

ROM

(This page is intentionally blank.)

4-47

ROM

Stimulus Program Planning |

PROGRAM: ROMO.DATA

READS FIRST 2K OF DATA FROM ROMs UZ9 AND
u3o

MEASUREMENT AT:

U298-11,12,13,15,16,17,18,19
U30-11,12,13,15,16,17,18,19

PROGRAM: ROM1_DATA

READS FIRST 2K OF DATA FROM ROMs U27 AND
uz8

MEASUREMENT AT:

U27-11,12,13,15,16,17,18,19
U28-11,12,13,15,16,17,18,18

AEADY EAD 80286 BUS
CIRCUIT MICROPROCESSOR BUFFER
AODRESS hal
DECODE _

4-48

T

P

ROM

] 27285
404 27258
] a0 00|21 IO
| Ta02 ai 011218 404 10fa0 po|di 100D
[TAq3 a2 o2 |13.1003] o a1 oy |42 Iood
| 1204 43 o318 1D roT] A2 (z{i3 IDGZ
_Ags §las 0a [1671D04 ADE a3 o3[d5 1003
“f 5145 og |47 1005 I 6las 04[1B 1003
L 1407 al,. g[8 1006 s —]"5 08 7 1005
[1a08 31,7 g7 [18 1007 = |46 o0g[1B__TD0S
409285 [Tios 3 5" 1D0T
48 a7 07
A10_24] g A00 28| ,p
A 21 A a4
ALQ AD
A12 23,4 Al Bif,.9
IYERI FYENE1
Ald 26 Al3 2
a1a A12
Ail 27 Ald 36
- Al4 4 A13
5 LS 37
2 Ala
xd 1
50 w2P
€
FR
=>4 DE
£] 2 uap
Ha-3 \gui-2 272858
14 tE] | IAD1 10],5 il IDOB A 10 27258
402 A1 01 |22 1008 201 12]ac oo 1 08
AD3 a2 oz |23 ID10 oA o 1 08
-Ag“ 143 03 [15 TD11 203 Blaz oz 1
A0S 6], g4 [10 IDI2 A H#a o3 18 1014
e R74 A6 B).g g5 [17 1043 . 8las p4i8 _TDIP]
A 4las os [18 T014] n Slas o517 1013]
4.7K Al 31,7 o7[a9 1016 4las p5fd8 T054)
AOD_ 25 | 1408 3| 1§ 1p18
A8 A7 o7 3
Al 24 ADS 28
A9 A8
A11 B A10_ 24
a1z A0 FTH
Ha o] Mt = 23] 0
_ L532 2] a1 A11
AEAD 1 A14 86|19 Laas 3 2| a2
2] [Ta18 37 445 READ 4 864139
-1 1 5 27
ROM1 = Vpp Ald
20} w5 BV 4
—204TE = vop
225 —20Te
AOHLADY. uzs 254 TE
FOMORDY u3o
DATA G AODAESS BUS

Figure 4-13: ROM Stimulus Program Planning

4-49

ROM

program romQ_data

STIMULUS PROGRAM to exerclise data out of ROMs U29 and U30,

stimulus programs and response files are used by GFI to backtrace
from a falling node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
!
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT, These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus contreller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus contreller !
is out of synchronization, The recover () program is executed to !
resynchronize the bus controller and the pod. !

1

TEST PROGRAMS CALLED: !
recover {} The 80286 microprocesscr has al
bus controller that is totally!

separate from the pod. In 1

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and thel

bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}

Global Varlables Modified:
recover times Reset to Zero
devname Measurement device !

declare global numeric recover times

{continued on the next page)

Figure 4-14: Stimulus Program (rom0_data)

4-50

P

handle pod_timeout_enabled line
recaver ()

end handle

handle ped timeout recovered
recover ()

end handle

recover_times = 0
! Let GFI user select which T1/0 module to use

if (gfi control) = "yas" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program ROMO_DATA"

Set deslred measurement modes

setspace space (getspace space "memory", size "word"v)
reset device devname

sync device devname, mode "pod®

sync device "/pod", mode "data®

Present stimulus to the UUT

arm device devname ! Start response capture.
rampaddr addr $E00CO, mask $iFE
readout device devname ! End response capture

end rom0_data

Figure 4-14: Stimulus Program (rom0_data) - continued

4-51

ROM

) STIMIFLUS PROGRAM NAME: ROMO DATA

DESCRIPTION: : SIZE: 454 BYTES
------------------- Response Data -—-e====rm——————————

Node Learned Async Clk Counter Priority
Signal Src with $1IG © IVL 1LVL Mode Counter Range Pin
U29-11 PROBE 45DD 1 G TRANS
U29-11 I/0 MODULE 45DD 1 0 TRANS
U28-12 PROBE CF83 1 0 TRANS

- y29-12 1/0 MODULE CF83 1 0 TRARNS
U29-13 PROBE BD79 1 0 TRANS
U29-13 1/¢ MODULE BD79 1 0 TRANS
U29-15 PROBE 876 1 O TRANS
029-15 1/0 MODULE 8A76 1 0 TRANS
U29-16 PROBE 66F3 1 O TRANS
U29-16 I/0 MODULE 66F3 1 O TRANS
U29-17 PROBER FARS 1 O TRANS
u29-17 1/0 MODULE FABS 1 O TRANS
Uy29-18 PROBE 334E 1 O TRANS
Uz29-18 I/0 MODUGLE 534E 1 O TRANS
Uz9-19 PROBE 8D0A 1 O TRANS
u29-19 1/0 MODULE BDGA 1 O TRANS
U30-11 - 1/0 MODULE 73E9 1 0 TRANS
U3e=-12 I1/0 MODULE ACB4 1 0 TRANS
030-13 I/0 MODULE 50BB 1 0 TRANS
U30-15 I/0 MODULE 5B3B 1 0 TRANS
U30-16 I/D MODULE O6EF 1 0 TRANS
v30-17 I/0 MODULE 00A0 1 0 TRANS
U30-18 I1/0 MODULE 6BFO 1 0 TRANS
u30-19 I/0 MODULE 52EE 1 0 TRANS

Figure 4-15; Response File (rom0_data)

4-52

———

ROM

program roml_data

LN Ry R S R RN N NN N N R RN RN R A RN U TR R A SRR ARN AR ET

STIMULUS PROGRAM to exercise data out of ROMs U29 and U30.

1
!
! stimulus programs and response files are used by GFI to back-trace

! from a falling node. The stimulus program must create repeatable UUT
! activity and the response flle contains the known~good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

!

!
!
1

This stimulus program is one of the programs which creates activity
in the kernel area of the UUT. These programs create activity with
or without the ready circuit working properly. Because of this, all
the stimulus programs in the kernel area must disable the READY Input
to the pod, then perform the stimulus, then re-enable the READY input
te the pod. The BO286 mlcroprocessor has a separate bus controller;
for this reason, disabling ready and performing stimulus can get the
bus controller ocut of synchronizatlon with tha pod. Two fault
handlers trap pod timeout conditions that indicate the bus controller
is out of synchrenization. The recover {} program ls executed to
resynchronize the bus controller and the pod,

!

!

i

!

[

1

1

!

1

! TEST PROGRAMS CALLED: 1
! recover 4] The 80286 microprocessor has al
! bus controller that is totaly !
i separate from the pod. In t
! some cases the pod can get out!
! of sync with the bus control- |
! ler. The recover program !
! resynchronizes the pod and thel
! bus controller.

! !
! GRAPHICS PROGRAMS CALLED: I
! {none) 1
1 !
I Global Variables Modified: 1
1 recover_times Reset to Zero

! devname Measurament device I
[|

1l!!!!!l!!!ll!!!!1I[l!!!ll!Il!!!I!lll!llll!!IIII!II!II!II[!III!!!!I!I!!
!!!!I!l!!llI!!!!ll[!!!Ill!!!!ll[[!!!!1!!!!!1[!1!ll!ll!ll!lll!ll!ll!!!!!ll
| Main Declarations !
!Illll!![!ll!!]I!II!!II!!!!!l!!!!llllllllII!![!IIII!!!IllI!!I!lI!!!!ll!!!

declare global numeric recover_times

(continued on the next page)

Figure 4-16: Stimulus Program (rom1_data)

4-53

ROM

handle pod timeout_enabled line
recover{)

end handle

handle ped_tlimeout_recovered
recover ()

end handle

recover_times = 0
! Let GFI user select which I/0 module to use

if {gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program RCM1 DATA"

! Set desired measurement modes
setspace space (getspace space “"memory", size "word"}
reset device devname
sync device devname, mode "pod
syne device "/pod", mode “data"

! Present stimulus toe the UUT

arm device devname ! Start response capture.
rampaddr addr $F0000, mask S1FE
readout device devname ! End response capture

end program

Figure 4-16: Stimulus Program (rom1_data) - continued

4-54

ROM

STIMULUS PROGRAM NAME:

DESCRIPTION:

Hede Learned
Signal Src With
Uz27-11 PROBE
Uz27-11 1/0 MODULE
0V27-12 PROBE
v27-12 I/0 MODULE
U27-13 FROBE
U27-13 1/0 MODULE
U27-1% PROBE
U27-15 I/0 MODULE
y27-16 PROBE
U27-16 I/0 MODULE
v27-17 PROBE
U27-17 I/0 MODULE
U27-18 PROBE
Uz27-18 1/0 MODULE
U271-19 PROBE
U27-19 I/0 MODULE
u28-11 I1/0 MODULE
uz28-12 I1/0 MODULE
uz8-13 I/0 MODULE
V28-15 I/0 MODULE
u28-16 1/0 MCDULE
U28-17 1/0 MODULE
Uzs-1g 1/0 MODULE
uzg-19 I/0 MODULE
U23-2 PROBE
U23-2 I/0 MCODULE

ROML_DATA

SIG

73E9
73E9
AC84
ACB4
50BB
50BB
5B3B
5B3B
06EF
06EF
00AO
00RO
6BED
6Br0
52EE
52EE
450D
CF83
BD79
8AT76
66F3
FABS
534E
8D0A
52EE
52EE

Response
Async Clk
LVL INVL

L il el e e e

0
0
0
0
¢
0
0
0
0
]
0
0
2}
0
0
0
0
0
0
0
0
0
0
i}
0

SI2E: 982 BYTES
Data
Counter Priority
Mode Counter Range Pin
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS

(continued on the next page)

Figure 4-17: Response File (rom?1_data)

4-55

ROM

4-56

PRCBE
I1/C MODULE
PROBE
I1/0 MODULE
PROBE
I1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MCDULE
PROBE
I/0 MODULE
PROBE
1/0 MODULE
PROBE
I1/0 MODULE
PROBE
1/0 MODULE

Figure 4-17: Response File (rom1_data) - continued

6BF0
6BFO
00A0
COAQ
06EF
06EF
SB3B
SB3B
50BB
50BB
ACB4
ACB4
TIES
73E9
BDOA
BDOA
534E
534E
FABS
FABS
66F3
66F3
8AT6
8ATE
BD79
BD79
CFa3
CF83
45DD
450D

FRPHEPHRBPRRRRRRRRRHRRRERRRERRRERRS/RBB -
COOOO0O0COoOoOQOOLO00oC0oODoOoOoDDOoQOO00

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS

TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

P

ROM

Summary of Complete Solution for ROM 4.2.7.

The entire set of programs and files needed to test and GFI
troubleshoot the ROM functional block is shown below. The
format below is similar to a 9100A/9105A UUT directory (you
could consider the functional block to be a small UUT), but in
addition shows the use of each program and the location in this
manual for each file.

UUT DIRECTORY
(Complete File Set for ROM)
Programs (PROGRAM):
TEST_ROM Functional Test Section 4.2.5
ROMO_DATA Stimulus Program Figure 4-14
ROMI_DATA Stimulus Program Figure 4-16
DECODE Stimulus Program Figure 4-108
Stumulus Program Responses (RESPONSE):
ROMO_DATA Figure 4-15
ROMI_DATA Figure 4-17
DECODE) Figure 4-109
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-57

ROM

4-58

(This page is intentionally blank.)

U

RAM

RAM FUNCTIONAL BLOCK 4.3.

Introduction to RAM 4.3.1.

The typical RAM block consists of the RAM chips, an address
path from the microprocessor to the RAMs, a bidirectional data
path between the microprocessor and the RAMs, and RAM-
select circuitry. There are often hardware buffers between the
microprocessor and the RAM chips.

There are two basic types of RAM: static and dynamic. Static
RAM chips are faster and require no refresh circuitry. They are
also more expensive and take more room for a given memory
size. Dynamic RAM chips use a capacitor for charge storage
and therefore must be periodically refreshed to maintain data
storage. However, dynamic RAM chips provide more memory
for a given size chip.

A simplified diagram of a typical RAM functional block is
shown in Figure 4-18.

Considerations for Testing and
Troubleshooting 4.3.2.

Speed and accuracy are the most critical factors in RAM testing,
and RAM tests are typically a compromise between these two
factors. To further complicate the issue, different hardware
configurations bring with them different failure mechanisms
which may require specialized testing.

The built-in RAM tests offers a number of choices to better
match the test to the testing needs. While the RAM FULL,
RAM FAST and pod-dependent RAM QUICK tests directly
address the speed and accuracy compromise, they are different
from each other,

Section 5 of the Technical User's Manual describes the various
RAM tests in detail.

4-59

RAM

Micro-
processor

4-60

RAMs

Figure 4-18: Typical RAM Block

Data N
Commm—y f K .
RAW Strobe
(I =
I AdddressfMUh :
Address Bus N Address ﬂnc_ e_‘res
/] Buffer 1 rcuitry [
i (Dynamic l'W
; RAMOCnlyy
I A
Decode RAM Control
& Select

RAM

Many types of faults can occur in RAM functional blocks.
Address lines or data lines can be stuck or tied to other lines,
Individual memory cells can be stuck low or high, or cells can
be aliased (they respond to more than one address). Transition
faults can exist (where a cell can change from one state to
another, but not back again). Coupling faults can cause the
contents of one cell to be disturbed when the contents of another
cell is changed. If this coupling depends on the contents of
several neighboring cells, the fault is called a pattern sensitive
fault. Chip select address decoding logic can be faulty. Row or
column decoders might not select when they should or they
might select when they shouldn't. In dynamic memory, refresh
logic can fail, causing cells to lose their contents.

Although failure mechanisms are different between dynamic and
static RAM, both types of RAM may be functionally tested with
exactly the same built-in RAM tests; only the delay parameter is
of unique concern for dynamic RAM, The delay parameter
provides a means of testing the refresh circuitry by specifying
the number of milliseconds to wait for refresh-related faults to
occur,

The first step in troubleshooting RAM is to run a built-in
functional test. Besides confirming a RAM fault, the functional
test often provides excellent clues for where to begin fault
isolation. Figure 4-19 illustrates typical fault information
provided by the RAM tests.

In general, the following procedure will work for
troubleshooting any RAM faults discovered by the
9100A/9105A:

1. Create a combination of reads and writes to confirm
the failure,

2. Synchronize the probe as needed.

3. Perform looping reads and writes while tracing with
synchronized probe.

4-61

RAM

Fault | TEST RAM FAST TEST RAM FULL
Condition h . coupling coupling
enabled disabled
always found always found always found

Stuck cells
Ali.ased cells
Stuck address lines
Stuck data lines

Shorted address lines

Multiple selection
decoder

Dynamic coupling

may be found always found always found

Shorted data lines

Aliasing between
bits in same word

may be found always found may be found

H 1] "

Pattern-sensitive
faults

not found not found not found

Refresh problems

always found, if delay is sufficiently long and standby reads do
not mask the problem.

Figure 4-19: RAM Test Failure Information

4-62

RAM

RAM Example : 4.3.3.

The Demo/Trainer UUT, Figure 4-20, uses 128K bytes of

dynamic RAM, organized as 64k x 16 bits, and composed of
sixteen 1-bit wide 4164 chips.

Keystroke Functional Test 4.34.

Use the RAM TEST key to enter the following command:

TEST RAM FAST ADDR (¢ UPTO 1FFFE- DATA MASK ..
. FFFF ADDR STEP 2 DELAY 250 SEED 0
. (ADDR OPTION: MEMORY WORD})

4-63

RAM

Keystroke Functional Test

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET TEST ACCESS SOCKET

RESPONSE

{BUILT-IN RESPONSE MEASUREMENT)

BUS
BUFFER

i

CLOCK AND RESET oLk

Y
READY ADDRESS
CIRCUIT DECODE

e

DYNAMIC
AT RAH -

TIHING

T

4-64

RAM

e

ID15 014

Toa2 L1001

Figure 4-20: RAM Functional Test

4-65

RAM

Programmed Functional Test 4.3.5.

4-66

The test_ram program is the programmed functional test of the
Dynamic RAM functional block. This program uses the
testramfast command to test the RAM. This command will
generate one of eleven different fault conditions if the testramyfast
fails. All eleven fault condition handlers pick up some
parameters and redirect the fault condition to a new fault
condition called ram_component. The fault condition handler
for the ram_component fault condition accepts a parameter called
data_bits that indicates which data bit positions are faulty.

The ram_component fault condition handler first checks the
Ready circuit to make sure that a ready fault condition is not
causing RAM failures. If the Ready circuit is good, one of the
failing RAMs (as indicated by the dara_bits parameter) is
checked using the gfi test command, If a failure is found, GFI
takes control and backtraces to the circuit fault causing the
failure.

If the RAM component is good, the ram_component fault
condition handler uses the gfi test command to check the data
bus at the bus buffers. If a failure is detected, GFI begins
backtracing from the bus buffers.

program test_ram

1 FUNCTIONAL TEST of the RAM functional bleck.
1

1
! 1
1 This pregram tests the RAM functional block of the Demo/Tralner. The !
! TL/1 testramfast command is used to test the RAMs. If the RAMs are !
I found to be faulty, then one of twelve built=-in fault conditions 1is !

1

!

! generated.
I

! Setup

podsetiup ‘enable ~ready® “on"

podsetup 'report fereing' “on®

setspace space (getspace space "memory", size “word")
| Maln part of test

testramfast addr 0, upto SLFFFE, delay 250, seed 1

end program

,_1
AT

N

RAM

Stimulus Programs and Responses 4.3.6.

Figure 4-21 is the stimulus program planning diagram for the
RAM functional block. There is one stimulus program and a
matching response file for RAM. The stimulus program
ram_data outputs data from RAM onto the data bus.

One rule for a stimulus program is that data should flow in only
one direction during the measurement portion of the stimulus
program. Although ram_data executes ram_fill in order to fill
RAM with known data, ram_fill is executed before the
measurement is started in the ram_dara stimulus program.
Therefore data will flow only in one direction during the
measurement portion of ram_data.

4-67

RAM

Stimulus Program Planning

PROGRAM: RAM_DATA

INITIALIZATICN PROGRAM: RAM_FILL

EXECUT&ES RAM.FILL AND READS FROM THE FIRST
512 LOCATIONS OF RAM

INITIALIZES RAM BY FILLING THE FIRST 512
LOCATIONS OF RAM WITH STANDARD DATA

4-68

MEASUREMENT AT: MEASUREMENT AT:
Us5-14 us1-14 W41-14 US7-14 [NONE)
us4-14 Us0-14 u40-14 U36-14
u53-14 U4g-14 u3g-14 U35-14
Us2-14 U48-14 U38-14 U34-14
CLOCK ANG RESEY oLk 80296 BUS
MICADRAOCESSOR BUFFER
RERDY f
READY ADDRESS
CIRCUIT DECODE
DYHAHIC
| mmoy 0 | RAW
TIMING

RAM

y [

TAH-WATTE

& z 1003 lrooz

—

Figure 4-21: RAM Stimulus Program Planning

4-69

RAM

program ram_gata

STIMULUS PROGRAM to exercise data out of the dynamic RAM.

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

!
]
]
1
1
]
1
This stimulus program is one of the programs which creates activity |
in the kernel area of the UUT. These programs create activity with !
or without the ready circult working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the ped, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocesser has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap ped timecut conditlons that indicate the bus controller !
is out of synchronization. The recover() program is executed to 1
resynchrenize the bus controller and the pod. 1

1

1

1

L

TEST PROGRAMS CALLED:
dram_f£i111 () Initialize data in the RAM

recover 0 The 80286 microprocessor has a!
bus controller that is totaly !
separate from the pod. In f
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program f
resynchrenlzes the pod and the
bus controller,

GRAPHICS PROGRAMS CALLED:
{none)

Local Variables Modified:
devname Measurement device

Global variables Modified:
recover_times Reset to Zerc

rn-1-1'-m'!u!!!n!umuuumnuu RSN SRR TERSNERNATY

declare global numeric recover times

{continued on the next page)

Figure 4-22: Stimulus Program ({ram_data)

4-70

T

C

RAM

R RN RN RN e RN R NN NN SN YR S RN S N RN NSRS A RN AR IANRIN
| FAULT HANDLERS: !
RN RNy RNy RSN N N A YRR R RSN AR RN RN RARRR ISR IEY

handle pod_timecut enabled line
recover ()

end handle

handle pod timeout_recovered
recover (}

end handle

TIRLELe ettt

! Main part of STIMULUS PROGRAM 1

LR B LR R bt ettt

recover times = 0
! ILet GFI user select which I/0 module to use

1f {(gfi contrel} = "yas" then
devname = gfi device

else
devname = "/modl"

end if

print “Stimulus Program RAM DATA"

! Set desired measurement modes

reset device devname

execute ram fill()

setspace space (getspace space "memory", size "word")
sync device devname, mode "pod"

sync device "/pod", mode "data"

! Present stimulus: Read data ocut of RAM

arm device devname ! start response capture.
rampaddr addr 0, mask $1FE
readout device devname ! End response capture

end program

Figure 4-22: Stimulus Program (ram_data) - continued

4-71

RAM

STIMULUS PROGRAM: RAM DATA

DESCRIPTION:
Node Learned

Signal Sre With SIG
U34-14 I/0 MODULE 95Al
U35-14 I/0 MODULE 6F97
U3e-14 I/0 MODULE 7744
U37-14 I/0 MODULE 5AES
U3s-14 I/0 MODULE AS4D
U39-14 I/0 MODULE 797B
U40-14 I/0 MODULE ASF7
U41-14 I/0 MODULE 3BEF
U48-14 PROBE coA6
U48-14 I/0 MODULE COA6
V49-14 PROBE 1338
U49-14 I/0 MODULE 1338
U50-14 PROBE 66F9
U50-14 I/0 MODULE 66F9
U51=-14 PROBE 6CF8
U51-14 I/0 MODULE &CF8
U52-14 PROBE BEOS
U52=-14 I/0 MODULE BEOS
U53-14 PROBE 3ciC
U53-14 I/0 MODULE 3C7C
U54-14 PROBE 70F3
U54-14 1/0 MODULE 70F3
U55-14 FROBE DACC
U55~14 I1/0 MOCDULE DACC

4-72

Figure 4-23: Response File (ram_data)

Response

Async Clk

LVL IVL

P HRR SRR R R R R RRE R R RS e
COO0ODOoCCOCOO0COCOOC0OCO0O0DD0OO0

SIZE:

Data

Counter
Mode Counter Range

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

454 BYTES

Priority
Pin

TS

P

RAM

program ram fill

(hone}

{none}

TEST PROGRAMS CALLED:

GRAPHICS PROGRAMS CALLED:

[Text Files Accessed:

! dram f£i111

setspace space

{getspace space ‘memery”, slze "word"}

writeblock file "dram filll®, format "motorela"

end program

Figure 4-24: Inititalization Program (ram_fif})

4-73

RAM

Summary of Complete Solution for RAM 4.3.7.

The entire set of programs and files needed to test and GFI
troubleshoot the RAM functional block is shown below. The
format below is similar to a 9100A/9105A UUT directory (you
could consider the functional block to be a small UUT), but in
addition shows the use of each program and the location in this
manual for each file.

UUT DIRECTORY
(Complete File Set for RAM)

Programs (PROGRAM): .

TEST_RAM Functional Test Section 4.3.5

RAM DATA Stimuolus Program Figure 4-22

RAM_FILL Initialization Program Figure 4-24
Stimulus Program Responses (RESPONSEY):

RAM DATA Figure 4-23
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):

DRAM_FILL1 Initialization Data File
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

.
-

4-74

r—

Dynamic RAM Timing

DYNAMIC RAM TIMING FUNCTIONAL BLOCK 44.

introduction to Dynamic RAM Timing Circuits 441,

Unlike static RAM, dynamic RAM chips use a capacitor for
charge storage and therefore must be periodically refreshed to
maintain the data in memory. Refreshing does not require that
data be re-written at memory locations; it requires only that
every row be accessed within a certain time period (typically at
least every 2 milliseconds). This is sufficient to restore the
charge on the memory cells.

In addition, dynamic RAM uses multiplexed address signals.
The row address is clocked into the internal decoder of the
dynamic RAM chip with the falling edge of the Row Address
Strobe (RAS), and the column address is clocked with the
falling edge of the Column Address Strobe (CAS). Multiplexed
addressing decreases the pin count and package size, but it also
makes dynamic RAM more difficult to test and troubleshoot than
static RAM.

Considerations for Testing and
Troubleshooting 4.4.2.

The thought process used to test and troubleshoot dynamic RAM
is very similar to that used for static RAM, but the actual
measurements for dynamic RAM are more difficult because of
row and column strobing for multiplexed addresses, because of
refreshing, and because there are more failure mechanisms.

Consider, for example, a dynamic RAM with 64K memory
locations addressed by eight address inputs (MA7-MAQ). A
multiplexer allows the 16 address lines to be brought to the eight
RAM address lines, using RAS to strobe the row address and
CAS 1o strobe the column address. Typical timing for a read
cycle of such a system is shown in Figure 4-25.

With static RAM, the microprocessor's address lines can be
tested by making measurements using the probe or an /O

4-75

Dypamic RAM Timing

- T
i
o B /] —
e LTIy | /1
e Refresh Cyclo ———fs Read Cycle ——————»]

~REFRESH \ ' /

~RAS —_/—\i I
wo-wo TN XN XTIIN L

DATA Data Valid

Dynamic RAM Read Cycle, Wilh RAS-Oniy Refrash

.,

Figure 4-25: Dynamic RAM Read Cycles RS

4-76

Dynamic RAM Timing

module synchronized to the pod address while performing
looping reads or writes. With dynamic RAM, however, the
RAM's address inputs are multiplexed between row and column
addresses. It is important to be able to separate row addressing
from column addressing. To test dynamic RAM addressing
requires the ability to control the timing of the clock strobe for a
measurement. The 9100/9105A has this capability; under
program control, it can adjust the timing for when the probe or
I/O module actually clocks data. Using the geroffser and
setoffset commands, you can create a program to measure the
address line activity on the RAM chips at the RAS strobe (or at
the CAS strobe). Typically, it makes sense to have two separate
programs: one to measure activity for RAS address timing and
one to measure activity for CAS address timing.

For the top example of Figure 4-25, the TL/1 setoffset and
getoffset commands are used to adjust the sync timing from Pod
Data Sync (or Pod Address Sync) to the RAS and CAS
positions. One program could be used to measure at RAS time
and another to measure at CAS time. The I/O module or probe
used to measure the RAS and CAS address activity would be
synchronized to Pod Data Sync or Pod Address Sync.
However, the setoffset command provides an offset from Pod
Data Sync or Pod Address Sync that determines when the
clocking for measurements actually occurs.

For some designs, more than one RAS cycle can occur during a
read or write cycle. The bottom half of Figure 4-25 shows
typical timing for such a situation. RAS goes low first for a
refresh and then again later for the read. In this case, it is not
sufficient to clock measurements on address lines with RAS
alone. If you want to examine the row address signals on the
address lines, you could use the Refresh signal to qualify
clocking for the appropriate address information.

Measuring the RAS and CAS Lines
An easy check for RAS and CAS lines is to look for activity on
the lines. With the probe or I/O module synchronized to the

FREERUN clock, an asynchronous level history for RAS
should always show high and low levels and never an invalid

4-77

Dynamic RAM Timing.

4-78

level. An asynchronous level history for CAS will be the same
as RAS if it is being accessed at the time. When the RAM is not
being accessed, CAS may be similarly active or it may remain
high, depending on the UUT.

Although the absence of the proper levels described above will
indicate some types of faults, these simple checks cannot
determine if the lines are definitely good. Subtle timing
problems are common with some dynamic RAM designs.

To analyze the exact timing of RAS and CAS, use the
9100A/9105A to generate the appropriate sync signal and to
display the UUT waveforms on an oscilloscope:

1. Use the SYNC key on the operator's keypad to select
the Pod Address Synchronization mode:

SYNC TO PCD ADDR
or SYNC I/0 MOD <number> TO POD ADDR

2. Use the READ key on the operator's keypad to enter
the following command:

READ FAST FOREVER ADDR <ram address>

3. Synchronize an oscilloscope to the TRIGGER
OUTPUT sync output on the rear panel of the
9100A/9105A.

4, Study the oscilloscope waveforms at the dynamic
RAM chips.

Once the timing of RAS and CAS (as well as other dynamic
RAM signals) is understood from the above procedure, two
options are available. The first is to troubleshoot directly with a
synchronized oscilloscope, and the second is to write a TL/1
program to automate the procedure.

Dynamic RAM Timing

Determining If Refresh Signals Are Working

Typical dynamic RAM must access every row address for cell
refresh at least every 2 milliseconds. The ability of the
9100A/9105A to measure frequency min-max is the simplest
tool for troubleshooting the circuitry that implements this
refresh. No matter how the refresh circuitry is designed, the
refresh signals (refresh address, RAS, and related timing
signals) are on a regular schedule of one full cycle in less than 2
milliseconds. For a first-cut characterization of these signals, try
measuring frequency min-max.

For a more precise characterization of the refresh signals, use the
external synchronization capabilities (start, stop, clock) of the
9100A/9105A. Characterize all related signals during the
start/stop interval of one refresh cycle, and then characterize the
signals used for start/stop/clock with frequency min-max.

Dynamic RAM Timing Circuit Example .4.4.3.

A diagram of read/write timing for the Demo/Trainer UUT's
RAM timing circuit is shown in Figure 4-26. The circuit
schematic is shown in Figure 4-28.

Accessing

To select RAM, U65 and U66 multiplex 16 address lines into
eight lines. The multiplexed address is then latched into the
RAM chips by two externally applied clock pulses. The first,
the negative-going edge of the row-address strobe (~RAS),
latches the eight row-address bits. The second, the negative-
going edge of the column-address strobe (~CAS), latches the
eight column-address bits. Timing for RAS and CAS is
determined by delay line U60. CAS is a delayed RAS signal; it
goes low 55 nsec after RAS goes low.

4-79

Dynamic RAM Timing

~RAS \

[
I
~CASL | \
~CASU |
| [
I

11111 P 1, e 1 1

DATA *{ Data Valid

Ir

I

Read Cycle

s\

~CASL

~CASU \
S 111111 1 e

wwawwere [JITITTIIN
oo osa vl W,
READY \ /

Write Cycla

Ir

§

Figure 4-26. Dynamic RAM Read/Write Timing

4-80

Dynamic RAM Timing

The 80286 can access upper and lower bytes separately, or
together as a word. RAM is organized as 128K bytes,
addressed from 00000 to 1FFFE. Access is accomplished by
gating ~CASL and ~CASU (U58D). IA0O (internal buffered
address bit zero) selects DO-D7 and ~IBHE (Internal Buffered
Bus High Enable) selects D8-D15. The low byte is accessed
when IAQOO is low. The high byte is accessed when IBHE- is
low. The entire word is accessed when both IAQO and ~IBHE
are low. The 80286 determines the type of access based on the
instruction being executed,

Refreshing
RAM Refresh timing is illustrated in Figure 4-27.

To maintain data, each of the 128 RAS addresses must be
refreshed (or read) every 2 msec. The Demo/Trainer UUT uses
the RAS-only refresh method for this purpose. A RAS-only
refresh cycle asserts only the RAS line to strobe in the refresh
address.

A single Demo/Trainer UUT row refresh occurs every 15 psec.
A complete refresh entails 128 row refreshes, requiring about
1.9 msec.

The RFRQ (Refresh Request) signal both marks the need for a -
refresh cycle and increments the refresh address counter U67.
U42 and U43 are used to divide PCLK (4 MHz) by 16 to
produce RFRQ.

RAM refresh and RAM access are mutually exclusive. U61D
insures that a refresh cannot occur if 2 RAM access is in
progress. Conversely, if a refresh is in progress and the
processor asks for a RAM access, U58B prevents Ready from
being returned, causing the addition of a wait state. The
processor is thus put on hold until the refresh is completed.

4-81

Dynamic RAM Timing

Refresh Refresh
Begins Ends

8 MHz CLK

Refresh
Requast RFRQ

Refresh
Grant RFGT

=

| S

Refrash

Address ~AFAE /
Enable

Refresh
AAS RRAS

v nsssss T TTTTTTTTTTIINC rowsasess YJTFITIFTTILLLLLLLLLLL

Refresh request occurs every 15 psec (67 KHz) and requires 600 ns to complete.

ot

Figure 4-27: RAM Refresh Timing -

4-82

Dynamic RAM Timing

RAM refresh is performed as follows:

1. If ~RAM is high (no RAM access in progress) and
refresh is being requested, U61D outputs RFGT
(Refresh Grant).

2. RFGT high enables the U44A/U44B state machine.
This circuit times the output of Refresh Address
Enable (RFAE) to U67. After the proper refresh
address setup time, it also enables Refresh RAS
(RRAS) to strobe in the refresh address.

3. After the refresh address is strobed in, REGT goes
low, allowing the processor access to the RAM.

Keystroke Functional Test 444,

1. Use a 16-pin clip module on side A of /O module 1 to check
CAS addresses and select line. Use the the EXEC and I/O
MOD keys with the commands below for each of the
following parts: U65, U66 and U26. The correct
measurement for each pin is shown in the table below.

EXECUTE UUT DEMO PROGRAM CAS STIM
SHOW I/0O MOD 1 PIN <see table> CAPTURED .. .
... RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O0 MOD PIN" column of the
response table in the next figure.

4-83

Dynamic RAM Timing

4-84

SIGNAL PART/PIN I/0 PIN SIGNATURE

RAO U654 4 0140
RAl -1 7 02AF
RA2 -9 13 0150
RA3 -1z 16 03A9
RA4 Ue6-4 4 o0oD3
RAS =7 7 0228
RAG -9 13 0151
RA7 -12 16 0263
RAM-WRITE U26-8 14 0352

2. Use a 16-pin clip module on side A of I/O module 1 to check
RAS addresses. Use the the EXEC and I/O MOD keys with
the commands below for each of the following parts: U65
and U66. The correct measurement for each pin is shown in
the table below.

EXECUTE UUT DEMO PROGRAM RAS STIM
SHOW I/0 MOD 1 PIN <see table> CAPTURED
.. RESPONSES

SIGNAL PART/PIN I/0 PIN SIGNATURE

RAO Ue5-4 q 02BF
RAl -7 1 0154
RA2 -9 13 022A
RA3 =12 16 01Dl
RAA4 Uée-4 4 022A
RAS -1 1 0150
RAG -9 13 022B
RA7 -12 16 0114

3. The next step is measuring refresh signals that are active
with no stimulus. Use a 16-pin clip module on side A of [/O
module 1 to test refresh signals on RAO-RA7. Connect the
external control lines as follows:

Start to U67-9
Stop to U67-9
Clock to U63-8

T

o~

Dynamic RAM Timing

Use the the SYNC and I/O MOD keys with the commands
below to measure refresh signals. The correct measurement
for each pin is shown in the table below.

SYNC I/O MOD 1 TO EXT ENABLE ALWAYS
CLOCK {4 START T srTop 1

ARM I/0 MOD 1 FOR CAPTURE USING SYNC

SHOW I/0 MOD 1 PIN <see table> CAPTURED
RESPONSES "

SIGNAL PART/PIN I1/0 PIN SIGNATURE

RAQ Ue5-4 4 968C
RAL =17 7 AFCl
RAZ -9 13 - 4A2C
RA3 =12 16 25AF
RA4 Ue6-4 4 ACDE
RAS =7 7 122D
RAG -9 13 EEAG
RA? -12 16 68F8

Use a 14-pin clip module on side A of /O module 1 to check
the select logic. Use the the EXEC and /O MOD keys with
the commands below. The correct measurement for each pin
is shown in the response table in Figure 4-28.

EXECUTE UUT DEMQO PROGRAM RAMSELECT1
SHOW I/0 MCD 1 PIN 14 CAPTURED RESPONSES

Use a 14-pin clip module on side A of J/O module 1 to check
the select logic. Use the the EXEC and I/O MOD keys with
the commands below. The correct measurement for each pin
is shown in the response table in Figure 4-28.

EXECUTE UUT DEMO PROGRAM RAMSELECTZ2
SHOW I/0 MOD 1 PIN 14 CAPTURED RESPCNSES
SHOW I/0C MOD 1 PIN 17 CAPTURED RESPONSES

4-85

Dynamic RAM Timing

Keystroke Functional Test

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET Ugs uz2eé
uss us3
us8
RESPONSE TABLE
SIGNAL PART PIN 1/0 MOD PIN SIGNATURE
RAD UB5-4 4
Ra1 -7 7 SEE TEXT
AA2 -9 3
RA3 A2 6
RAG UG6-4 . 4
RAS 7 7
RAB -9 13
RA7 A2 16 SEE TEXT
RAM-WRITE u26-8 7
RASS Ug3-8 14 0186
CASU Usg-8 i B6FD
CASL K| 17 B603
CLOCK ANC AESET LS BUS
BUFFER
PCLK [HE 4
AEATY
READY ADRESS
CIACUIT DECODE -

4-86

L

Dynamic RAM Timing

ALEO4
TBRE 13
i BNE-4
i A5V 4~ 43
ALS0D
L A50 33
ALATCH
WAITE
ADORESS UG Uzs RS2 33 HAR-WAETE
10
TA0D
Adg 33 Ao
R4 33 RAL
Ada 33 AAz
R45 33 Ra3
SHA-B
v e -~ 9
R4 33 Ass
nar 233 Axs
RaB 33 Aag
R4g 33 na?
sHs-2
2 15
e
AT
AAHRDY
— PRHRD
g M508 _l Swi-4
75 10) usa)l | FAEE R4i | a3 13__FaS
Tt L5390
+5v¢ i 3
eI FTN
2_lecia 10al SNC
PCLK 4 1lsg sac| BHC
100
FE) ST FENT
3 fen 208 3LNG
LS 12428 anc‘%:g
R ALS10 2g0[9 NC
4 2 TR 13 uaz
u2 AFGT
SHE-3
’__/3 ta
[+5V +5V
ALs02 4 16
FFET 11
2] usa 113 2[p & gls Rrae 12[5 8 gla aAas
uaa ud4
5_FFAE 13 8_FRAS
T METEag
ALS74 1 ALS74 13
cLk

Figure 4-28: Dynamic RAM Timing Functional Test

4-87

Dynamic RAM Timing

Programmed Functional Test 4.4.5.

"

The tst_refrsh program is the programmed functional test for the
Dynamic RAM Timing functional block. This program checks
the outputs at U65, U58, U63 and U25 using the gfi rest
command. If the gfi rest command fails, the abort_test program
is executed and GFI troubleshooting begins. (See the Bus
Buffer functional block for a discussion of the abort test

program).

program tst refrsh

! FUNCTIONAL TEST of the DYNAMIC RAM REFRESH functional block. !
{ !
! Thls program tests the DYNAMIC RAM REFRESH functional block of the !
! Demo/Tralner. The gfl test command and I/0 module are used to perform !
! the test.

1
! !
! TEST PROGRAMS CALLED: !
! abort_test {ref-pin) If gfl has an accusation !
! display the accusation else !
! create a gfl hint for the !
! ref-pin and terminate the test!
! program {GFI begins trouble- !
! shooting) . !
|

print "\nlTESTING RAM TIMING & REFRESH Clircuit"
podsetup 'enable ~ready' "on™

if gfi test "UG5-1" fails then abort_test {("U65-1"}
LE gfi test "U66-1" fails then abort_test {*U&6-1"}

print “RAM TIMING & REFRESH TEST PASSES"
end program

Stimulus Programs and Responses 4.4.6.

4-88

Figure 4-29 is the stimulus program planning diagram for the
Dynamic RAM Timing functional block. The ras_stim and
cas_stim stimulus programs both perform read and write
accesses to various addresses in RAM. However, the getoffset
and setoffset commands are used to adjust the timing when the
data is measured, so that cas_stim measures data when CAS
addresses are valid and ras_stim measure data when RAS
addresses are valid.

Dynamic RAM Timing

The ramselectl and ramselect2 programs provide stimulus for
measurement of a number of logic outputs. The refsh_addr,
refsh_time, and refsh_u56 programs provide stimulus for
measurement at various ICs that perform the RAM refresh
function. The frequency program measures frequency at a
number of nodes.

4-89

Dynamic RAM Timing

Stimulus Program Planning

PROGRAM: CAS_STIM

EXERCISES THE CAS ADDRESS

MEASUREMENT AT:
iJ65-4.7.9.1 2
uet-4,7.9,12

u26-8

EXERCIOES THE RAB ADDRESS

MEASUREIIENT AT:

Ue5-4.7.8,12
U66-4,7.8,12

PROGRAM: RAMSELECT1

EXERCISES THE RAM SELECT LOGIC

MEASUREMENT AT:
U19-6 U58-3,6
u24-6 U59-6,10.9
U64-10 Ug3-8

Ugo-2,7,14 usi-1

PROGRAM: RAMSELECT2

EXERCISES THE RAM SELECT LOGIC

PROGRAM: REFSH_USS

MEASURES REFRESH TIMING FOR US6

MEASUREMENT AT: -
MEASUREMENT AT:
us7-12
u62-8 Us8-12
Us8-8,11
CLOCK AND RESET CLK B02B6 BUS
MICAOPADCESSOA BUFFER
PCLX CLK
REA
| READY AORESS
| CIRCUIT DECODE

4-90

P A

Dynamic RAM Timing

AaM
Yane
swa-4
+5Y a - 1
ALATCH
WATTE
AQORESS Bug
. TaE
15] 27.%ns, | 14 TX
NG 30
Ny LW C
e 3} 45.5ns |4 wo AAg
NC 13| 46.8ns, [12 Ke RaB
Us0 FAG
SHa-7
. i Aa?
oo
2.3 ALS0D
El 4
AAMT 5 | use h&
o Lo
HANRADY
+5Y
Lsi08 ALS0B
B
2[5 ole 3N
)
[7eas 10 usa)t
517 ne
\ Ls380
+5V i
4] 104
E Y 5 HC
JoLA 108
PoLK 4 1ie ool BNC
P O T
54 204
}—L4TcLa a0 1LNG
Ls1a 1252 oac[10 NG
9 NE
2oD|
vis AFGY
12] us4
Gk

-

Figure 4-29: Dynamic RAM Timing Stimuius Program Planning

4-91

Dynamic RAM Timing ;

program cas_stim

STIMULUS PROGRAM characterizes CAS address lines.

stimulus programs and respense flles are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-gocd responses for
the outputs in the UUT that are stimuiated by the stimulus program.

1 !
1 1
1 |
! !
! 1
1 {
! . 1
! This stimulus program is one of the programs which creates activity !
{ in the RAM area of the UUT. This stimulus program uses the setoffset !
! and getoffset commands to adjust the timing to CAS address valid. !
1 1
i 1
1 1
L 1
1 1
1 1
! 1
1 1
r 1

1

TEST PROGRAMS CALLED:

GRAPHICS PROGRAMS CALLED:
{nene)

local Variables Modified:
devname Measurement device
bias Offset value to use

! Main part of STIMULUS PROGRAM !

! Let GFI determine the measurement device.

if (gfi control} = "yes™ then
devname = gfi device

else
devname = “/modl"

end if

print "stimulus Program CAS_STIM"

(continued on the next page)

Figure 4-30: Stimulus Program (cas_stim)

4-92

ol

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

podsetup 'report power' "“off"

pedsetup ‘report forcing' “off"

podsetup 'report intr' “offw

podsetup 'report address' "offv

podsetup ‘report data' “off"

podsetup ‘report control' “offn

setspace space {getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode “data"

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal_offset = getoffset device devname

1f (setoffset device devname, offset bias) = 0 then
faunit 'setoffset returned a bad status, fatal error?

end if

! Present stimulus to UUT.

amm device devname
read addr $ABS4 ! This addr gives complmentary CAS address
read addr $1549A
write addr $1234, data $4320
read addr $55AA
write addr SABS4, data SAAAA
read addr $156A8
write addr $AAS4, data $55AA
read addr $1ADS0
write addr $1FFFE, data $FFFE
read addr $2AD4

readout device devname

! Restore calibration offset

setoffset device “/modl", offset cal offset
end cas_stim

Figure 4-30: Stimulus Program (cas_stim) - continued

4-93

Dynamic RAM Timing.

Response Data

Async Clk Counter

LWVL LVL Mode

STIMULUS PROGRAM NAME: CAS STIM
PESCRIPTION:
Node Learned

Signal Src With SIG
U65-4 1/0 MODULE 0149
U65-7 1/0 MODULE D2AF
U65-9 1/0 MODULE 0150
U65-12 1/0 MODULE 03A9
U66=-7 I/0 MCDULE 022A
U66-9 1/0 MODULE 0151
U66-12 1/0 MCDULE 0263
ubb=4 I/0 MCDULE 00D3
u26-8 1/0 MODULE 0352

4-94

Figure 4-31: Response File (cas_stim)

PRHEPREPPEH
QOO0 0000

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

SIZE:

Counter Range

199 BYTES

Priority
Pin

Dynamic RAM Timing

pregram ras stim

11
STIMULUS PROGRAM characterlzes RAS address lines,

1
!
1
{ stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the krown-gcod responses for
! the outputs in the UUT that are stimulated by the stimulus program.
I
]
1
'
t
I

{nene}

! GRAPHICS PROGRAMS CALLED:
{none)

! Local Varlables Modified:

1
]
!
!
[
1
1
f !
! TEST PROGRAMS CALLED: 1
1
r
!
!
! !
! !
! devname Measurement device !
! !

! Let GFT determine the measurement device,

1f {gfil control) = "yes" then
devname = gfi device

else
devname = "/modl"”

end if

print "Stimulus Program RAS_STIMM

! Set addressing mode and setup measurement device.
setspace space (getspace space "memory*, size "word")
reset device devname

sync device devname, mode "pod"
sync device “/pod", mode "addr"

{continued on the next page)

Figure 4-32: Stimulus Program (ras_stim)

4-95

Dynamic RAM Timing

t store calibration offset, set new offset
! Display warning message if setting new offset falls

cal_offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘setoffset returned a bad status, fatal error!'

end if

1 Present stimulus to UUT.

arm device devname
read addr 5ABS54 ! This addr gives complementary CAS address
read addr $1549A
write addr 51234, data $4320
read addr $55AA
write addr $AB54, data $SAARA
read addr $156A8
write addr $3AA54, data $55RA
read addr $1ADSO
write addr $1FFFE, data S$FFFE
read addr $22D4

readout. device devname

! Restore the calibrated offset value.
setoffset device devname, offset cal offset

end ras_stim

Figure 4-32: Stimulus Program (ras_stim) - continued

4-96

P

Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAS_STIM

DESCRIPTION: SIZE: 182 BYTES
Response Data
Node Learned Asyne Clk Counter Priority
Signal Src With SIG VL IVL Mode Counter Range Pin
U65-4 I/0 MODULE (gBF 10 TRANS
U65-7 I/0 MODULE (154 10 TRANS
U65-9 I/Q MODULE 022p 10 TRANS
U65-12 I/0 MODULE 01Dl 10 TRANS
U66-4 T/0 MODULE 022Aa 10 TRANS
U66=7 I/0 MODULE 0150 ro TRANS
U66=-9 I/0 MODULE 0228 10 TRANS
Ueg=12 I/0 MODULE 0114 10 TRANS

Figure 4-33: Response File (ras_stim)

4-97

Dynamic RAM Timing

program ramselectl

STIMULUS PROGRAM tc wiggle RAM select clreultry.

1
!
!
stimulus programs and response flles are used by GFI to backtrace !
frem a failing node, The stimulus program must create repeatable UUT !
activity and the respcnse flle contalns the known-good responses for |
the outputs in the UUT that are Stimulated by the stimulus program. I
[
1
1
1
1

1

1

1

1

1

1

!

| Ramselectl is used to stimulate the RAM select circuitry after the

! decoders. The stimulus is a comblnation of reads that will ensure

1 the decoder and related circuitry is werking properly.

1

! TEST PROGRAMS CALLED: 1
| recover 0 The 80286 microprocessor has a!
! bus contreller that ls totally!
! separate from the pod, In f
! some cases the pod can get out!
! of syn¢ with the bus control- !
1 ler. The recover program H
! resynchronizes the pod and the!
! bus controller. !
1 |
! GRAPHICS PROGRAMS CALLED: !
1 {nene} !
H !
! Global Vvarlables Meodified: !
! recover_times Reset to Zero !
I

handle pod_timecut_enabled line
recover ()
end handle

handle pod_timeout recovered
recover {)
end handle

! Let GFI determine the measurement device.
if (gfi contrel} = "yes" then
devname = gfl device
else
devname = "/modl*

end if
print “Stimulus Program RAMSELECT1®

(continued on the next page)

Figure 4-34; Stimulus Program (ramselect1)

4-98

./"_‘-‘

Dynamic RAM Timing

! Set addressing mode and setup measurement device,

setspace space (getspace space "memory™, size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod®, mode "data®

! Present stimulus to UUT.

arm device devname
read addr $1A5A4
read addr $F0000
read addr $FO000
read addr $5A5A
read addr $FO000
read addr $F000C
write addr $7BDF, data $1234
read addr $F0000
write addr $15A5A, data 59876
read addr $F0000
readout device devname

end program

Figure 4-34: Stimulus Program (ramselect1) - continued

4-99

Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAMSELECT1

DESCRIPTION: SIZE: 267 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With sSIG “LVL IVL Mede Counter Range Pin
Us8-3 I/0 MODULE O024F 10 TRANS
Uss-6 I/0 MODULE 01Bé 10 TRANS
U59-6 I/0 MCDULE 01B6 10 TRANS
Uel-11 I/0 MODULE 03F9 l1¢ TRANS
Ueo-2 I/0 MODULE 024F T o TRANS
Ue0-7 I/0 MODULE O01Bé 10 TRANS
UsD-14 I/C MODULE 01B6 10 TRANS
U59-9 I1/C MODULE Q3rg 10 TRANS
163-8 I/0 MODULE 01B6 10 TRANS
Ul9-6 1/0 MODULE ©24F 10 TRANS
U24-6 T/0 MODULE 01B6 10 TRANS
u64-10 I/0 MODULE Q24F 10 TRANS
U59-10 I/0 MODULE 0000 10 TRANS

Figure 4-35: Response File (ramselect1)

4-100

T

Dynamic RAM Timing

program ramselect2

STIMULUS PROGRAM characterizes RAM select logilc.

Stimulus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must cyeate repeatable UUT
actlvity and the response flile contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

!
'
1
!
I
1
!
Ramselect? iz used to stimulate the RAM select clreuitry after the 1
decoders. The stimulus 1s a combination of reads that will ensure t
the decoder and related circuitry is working properly. Ramselect2 — |
differs for ramselectl because setoffset is required to delay the !
data due to signal propogation though the number of parts in the i
ram decode clreuitry. 1
!
!
!
I
1
{
[
1
|
t

TEST PROGRAMS CALLED:
{none}

GRAPHICS PROGRAMS CALLED:
{none}

Global Varlables Modified:

(none}
1"'!"'”"!!!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!HI!!!!!!Il!ll!!!!!l!!!!!!!

1
r
!
!
!
!
t
1
!
1
1
f
!
!
1
!
1
'
1
!

R N S RN RN RN S NN RN RN N RS A RN R RS Re R0

! Main Declarations !

R R R e RNy NN e RN N RN NN RN N R SRR N RN SRR SRR R RE RS RNT
declare numeric blas = 999957

R e R N RN NN N NN SN NN R SN RSN R AR AR R RS E 200000

t FAULT HANDLERS: 1

R R RN RN NN RN s RN RN NN R S SRR AR RN e RN IRET

handle pod_timeout_enabled line
recover ()

end handle

handle pod timeout recovered
recover {}

end handile

handle pod timeout no_clk

end handle

g
g:

ARSI R NS NN RSN,

! Let GFI determine the measurement device.

if {gfi control} = "yes" then
devname = gfi device

(continued on the next page)

Figure 4-36: Stimulus Program (ramselect2)

4-101

Dynamic RAM Timing

else
devname = "“/modl*
end 1f
print "stimulus Program RAMSELECT2"

Set addressing mode and setup measurement device.

mem_word = getspace space "memory", size "worg"
mem byte = getspace space "memory", size "byte"
reset device devname

sync device devname, mode 'pod”

sync device "/pod", mode "data"

Store calibration offset, set new offset
Display warning message 1f setting new offset falls

cal_offset = getoffset device devname

if (setoffset device devname, offset bias} = 0 then
fault ‘'setoffset returned a bad status, fatal error'

end if

Present stimulus to UUT.

arm device devname
setspace {mem woird)
read addr $1A5A4
read addr $F00CO
Txkead addr $F0000
read addr $3ASA
read addr $F00CO
read addr $FO000Q
write addr $7BDE, data $1234
read addr $FO0Q0
write addr $15A5A, data $9876
read addr $F0000

setspace {mem hyte}

read addr 1

read addr 2

‘read addr 2

write addr 4, data 0

wrlte addr 5, data $12

read addr $1111

read addr $11111

read addr SAARA
readout device devname

! Restore original calibration cffset

setoffset device devname, offset cal offset
end program

Figure 4-36: Stimulus Program (ramselect2) - continued

4-102

e

Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAMSELECT?Z

DESCRIPTION: SIZE: 114 BYTES
Response Data
Nede Learned Asynec Clk Counter Pricrity
Signal Src With SIG LVL IVL Mode Counter Range Bin
uS8-8 I/0 MODULE B6FD 10 TRANS
us8-11 I/0 MODULE B603 10 TRANS
ué2-8 I/0 MODULE F9563 10 TRANS
us7-12 I/0 MODULE F99D Lo TRANS

Figure 4-37: Response File (ramselect2)

4-103

Dynamic RAM Timing

program refsh addr

IER AR RN [!!!!!![!!||I||l||1||f1|!]!!!!III‘IIIIIIIIIIIlll||l1lll|llIlIIII

I
! STIMULUS PROGRAM characterizes the refresh clrcuitry,

! stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT
activity and the response flle contalns the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1
1

1

1

1

1

!

{ TEST PROGRAMS CALIED:

! check_meas (devlice, start, stop, clock, enable)

1 Checks to see if the measure-
1 ment is complete using the

] TL/1 checkstatus command. If
1
1
t
r
1
1
1
1
1
!
I

redisplay connect locations,

! GRAPHICS PROGRAMS CALLED:
{ncne)

! Local Variables Modified:
done returned from check_meas ()
devname Measurenent device

1 Main Declarations 1
1|||||r|r1||1||1|||1||1|l|!|r1“!g||:|||r||r|||I!Hr||1|||!!“||l1|r|||1|

declare numeric done = 0

I|I|I1IIIII![IIII!IIIIlll1!!ll|rll!1l||!lIrI!![!II!IlIllrlll1l|l1l|I|III!
! Let GFI determine the measurement device.
if (gfi contrel}) = "yes" then
devpame = gfl device
else
devname = "/modl®

end 1f
print “Stimulus Program REFSH_ADDR™

(continued on the next page)

Figure 4-38: Stimulus Program (refsh_adadr)

4-104

Dynamic RAM Timing

Set addressing mode and setup measurement davice,

setspace space [getspace space "memory*, slze "word")
reset device devname

sync davice devname, mode “ext®

enable device devname, mode "always"

edge device devname, start 44, stop "~M, glock "-m

! Prompt user to connect external lines.

connect device devname, start "U67-9n, stop "U67-9", clock "U63~-8", common "gnd"

External lines determine measurement.
check meas times out and reprompts if external lines aren't connected

loop until done = 1
arm device devname
done = check_meas (devname, “UET-9M, “UET-ON, MUE3-gn, nauy
readout device devname
end loop

end program

Figure 4-38: Stimulus Program (refsh_addr) - continued

4-105

Dynamic RAM Timing

STIMULUS PROGRAM NAME: REFSH ADDR

DESCRIPTION: SIZE: 182 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Sxc With SIG IVL IVL Mode Counter Range Pin
u67-15 I/0 MODULE 96EC 10 TRANS
u67-1 I/0 MODULE AFCl 10 TRANS
ug7-2 I/0 MODULE 4A2C 10 TRANS
u67-3 I/0 MODULE 25AF 10 TRANS
ub?=4 I/0 MODULE ACDE 10 TRANS
u67-5 I/0 MODULE 122D 10 TRANS
u6T-6 I/0 MODULE EEAG 10 TRANS
ug?=7 I/0 MODULE 68F8 10 TRANS

Figure 4-39: Response File (refsh_addr)

4-106

Dynamic RAM Timing

program refsh time

! STIMULUS PROGRAM characterizes the refresh timing. 1
r 1
! Stimulus programs and response files are used by GFI to backtrace !
! from a failing node. fThe stimulus program must create repeatable UJUT !
! activity and the response file contalns the known-good responses for !
! the cutputs in the UUT that are stimulated by the stimulus program. !
t . !
! TEST PROGRAMS CALLED: !
! check meas {device, start, stop, clock, enable} !
1 Checks to see if the measure- |
! ment is complete using the !
! TL/1 checkstatus command. 1If !
! the measurement times out then!
! redisplay connect loecations. !
1 1
! GRAPHICS PROGRAMS CALLED: §
[(none} !
1 1
! Local Variables Modlfled: !
! done returned from check meas{) !
! devname Measurement device !
!Z!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!E!!!!!!!!!!!!!!!!!!!!!l!!!!!!!!!!!!!!!!!

! Let GFI determine the measurement device.

if (gfil control) = "yes" then
devname = gfl device

else
devname = "“/modl”

end 1if

print "Stimulus Program REFSH_TIME"

{continued on the next page)

Figure 4-40: Stimulus Program (refsh_time)

4-107

Dynamic RAM Timing

1 Set addressing mode and setup measurement device,

setspace space (getspace space “memory", slze “"word")
reset device devname

sync device devname, mode "ext™

enable device devname, mode "always"

edge device devname, start "+", stop “count", clock "-"
stopcount device devname, count 48

| Prompt user to connect external lines,
connect device devnane, start "Ue7-13", clock "U13-1", common "gnd"

! External lines determine measurement. .
! check meas times out and reprompts if external lines aren't connected.

loop until done = 1
arm device devname
done = check meas(devname, "UG7-13", "*u npl3-1n, wsw)
readout device devname
end loop

end program

Figure 4-40: Stimulus Program (refsh_time) - continued

4-108

T

Dynamic RAM Timing

STIMULUS PROGRAM NAME:

DESCRIPTION:

Nede Learned
Signal Src With
u59-9 I/0 MODULE
uf4=13 I/0 MODULE
ud4-5 1/0 MODULE
Ud4-6 PROBE
nd4-6 I1/0 MODULE
u59-10 1/ MODULE
U44-9 PRCBE
u44-9 I/0 MODULE
u44-8 1/0 MODULE
u6l-11 I/0 MODULE
u43-11 I1/0 MODULE

REFSH_TIME

sSIG

159A
9098
B7E6
DE42
DE42
4C3E
43F3
43F3
1A57

Response Data

O e e

COQoOoOO0OCO0 oo

Async Clk Counter
YL LIVL Mode

TRANS
TRANS

TRANS .

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

195 BYTES

Priority

Counter Range Pin

Figure 4-41: Response File (refsh_time)

4-109

Dynamic RAM Timing

program refsh_u36

! STIMULUS PROGRAM characterizes the refresh circuitry.

I
! L
! stimulus pregrams and response flles are used by GFI te backtrace !
! from a failing node, The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs 1n the UUT that are stimulated by the stimulus pregram. !
1
1
|
i
|

1

1

1

1

1

1

!

! TEST PROGRAMS CALLED:

! check_meas (device, start, stop, clock, enable)

1 Checks to see if the measure-

1 ment is complete using the

1 .- TL/1 checkstatus command. If !
1 the measurement times cut then!
1 redisplay connect locations, !
1
1
1
1
1
!
1
1

: t
! GRAPHICS PROGRAMS CALLED: '
(none} {
! !
1 Local Variables Modified: 1
done returned from check meas () !
devname Measurement device !

| Let GFI determine the measurement device.

if (gfi control} = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "stimulus Program REFSHE_US6"

{continued on the next page)

Figure 4-42: Stimulus Program (refsh_u56)

4-110

i

Dynamic RAM Tlminj_

I Set addressing mode and satup measurement device.

setspace space (getspace space "nemory*, size “word")
reset device devname

sync device devname, mode “ext®

enable device davname, mode "always"

edge device devname, start "+", stop “count®, clock "+v
stopeount device devname, count 48

I Prompt user to connect external lines.
cohnect device “/modl", start "U67-13", clock "U13-1", common “gnd*

! External lines determine measurement.
! check meas times out and reprompts If external lines aren't connected,

locp until done = 1
arm devlice davname
done = check meas {devname, "UET-13N, wen_ mp3o)n, wauy
readout device devname
end loop

end program

Figure 4-42: Stimulus Program {refsh_u56) - continued

4-111

Dynamic RAM Timing

STIMULUS PROGRAM NAME: REFSH U56

DESCRIPTION: SIZE: 63 BYTES
Response Data : |
Node Learned Async Clk Counter Priority
Signal Src With sIG LVL IVL Mode Counter Range Pin
U56-12 PROBE 10 TRANS 1
us6-12 I/0 MODULE 10 TRANS 1
Figure 4-43: Response File (refsh_u56) \

4-112

£Dynamie:RAM Timint

Summary of Complete Solution for
Dynamic RAM Timing 4.4.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Dynamic RAM Timing functional block is
shown below. The format below is similar to 2 9100A/9105A
UUT directory (you could consider the functional block to be a
small UUT), but in addition shows the use of each program and
the location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Dynamic RAM Timing)
Programs (PROGRAM);
TST_REFRSH Functional test Section 4.4.5
CAS_STIM Stimuolus Program Figure 4-30
RAS_STIM Stimulus Program Figure 4-32
RAMSELECTI Stimulus Program Figure 4-34
RAMSELECT2 Stimulus Program Figure 4-36
REFSH_ADDR Stimuolus Program Figure 4-38
FREQUENCY Stimulus Program Figure 4-117
REFSH-TIME ' -+ - Stimulus Program Figure 4-40
REFSH_U56 Stimulus Program Figure 4-42
Stimulus Program Responses (RESPONSE):
CAS_STIM Figure 4-31
RAS STIM Figure 4-33
RAMSELECT1 Figure 4-35
RAMSELECT2 Figure 4-37
REFSH_ADDR Figure 4-39
FREQUENCY Figure 4-118
REFSH_TIME Figure 4-41
REFSH_U56 ~ Figure 4-43
Node List (NODE):
NODELIST Appendix A
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix B
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-113

(This page is intenﬁonally blank.)

4-114

P

.,

Parallel 0

PARALLEL INPUT/OUTPUT FUNCTIONAL
BLOCK 45,

Introduction to Parallel /O 45.1.-

Parallel I/O implementations range in complexity from simple
latches to LSI components. This section covers two basic types
of parallel I/O circuits, simple discrete I/O circuits, and common
LSI components like Programmable Interface Adapters (PIA)
and Programmable Interval Timers (PIT). _

Parallel I/O is one of a microcomputer’s interfaces to the real
world. The microcomputers in products like cash registers,
copiers, telephone switching equipment, electronic instruments,
and personal computers often monitor and control optical or
electromechanical components like LEDs, displays, keyboards,
optical switches, printers, disk or tape drives. Often, the
interface to these components from the microprocessor's
perspective is a set of registers to which it can read and write
data.

Output lines may be connected to recording or display devices,
which can be damaged if random data is written indiscriminately
to them. Signals controlled by output ports can produce
voltages or actuate devices that can pose a threat to human
safety. Care should be taken in designing stimulus programs
when the possibility of injury to people or damage to equipment
can result.

\

Considerations for Testing and
Troubleshooting 4.5.2.

Programmable LSI Components
Programmable LSI components usually contain internal registers
which characterize the component to a particular circuit

application. Among the ways in which these components can be
programmed are:

4-115

Parallel /O

4-116

® Setinternal operating modes.

* Configure I/O ports as inputs or outputs,
® Setedge polarity on edge-sensitive inputs.
®* Enable or disable interrupts.

* Establish data exchange protocol.

When testing LSI components, it is necessary to initialize them
first. Initialization usually consists of a series of reads from and
writes to internal registers. It is useful to create a separate
9100A initialization program which can be called from various
stimulus programs, or from the operator's keyboard.

If a component, such as a PIA, does not work properly after
initialization, check the inputs that affect its operation, such as
chip-select lines, read and write lines, register-select lines, and
clocks. Signals that reset, gate, or set outputs to high impedance
might also be suspect. If these inputs all appear good, the bus
cycles accessing the component may not have the proper number
of wait states.

To verify operation of the component, stimulus commands such
as rampdata, read, and write can be used in combination with
I/0-module measurements. For troubleshooting both inputs and
outputs on devices such as LEDs and keyboards, it is often
necessary to prompt the operator to interact with the UUT.
Simple commands prompting operator action can be included in
stimulus programs and displayed on the operator's display.

Outputs can be tested with write, toggledata, or rampdata
commands. Responses can be read as signatures or as
asynchronous or clocked level history. Signatures are useful for
identifying outputs that are tied to each other. If there is not an
appropriate clock available, transition counts or level history can
be used. '

Inputs can be verified by reading the component. To exercise all
states of the input lines, some type of stimulus must be applied.
If the circuit allows, the inputs can be overdriven to each logic

Parallel 1/O

state with the /O module. For electromechanical devices such
as keys and switches, interaction with the person performing a
test may be required. Switch testing can be automated by using
solenoids to actuate the switches.

Discrete I/0

Components used for discrete /O include buffers, latches,
addressable latches, and flip-flops. Such components usually
have simpler interfaces to the microprocessor than
programmable LSI components and they are handled in a similar
manner, but their initialization procedures are different, if
required at all,

If data does not appear to be reaching /O latches, or is not read
from I/O buffers, it may be necessary to check the address
decoding logic to verify that the proper control signals are
present. Here are some common problems associated with
discrete I/O: :

* Outputs may be loaded by external devices. Such outputs
may work properly when disconnected. The loading
problem may be associated with the external device, or
with its connector.

* Inputs may be damaged by static electricity when they are
disconnected from the signal sources and left unprotected.

* Clocked inputs on components like latches or flip-flops
may be faulty.

® Reset inputs may either be stuck, forcing outputs to some
state, or open, preventing circuits from being initialized.

® Pullup or pulldown resistors that establish static logic
levels may be open, creating indeterminate inputs.

4-117

Parallel /O

Parallel IY/O Example 4.5.3.

The Programmable Interface Adapter on the Demo/Trainer UUT
(U31) is shown in Figure 4-44. It can be programmed for
operation with three ports, each with eight data lines. Each port
is addressed for read or write by address lines IAQ1 and TIAQ2.
Ports A (lines PAO-7) and B (lines PB0-7) are used for outputs
to the two on-board seven-segment LEDs. Port A corresponds
to the upper LED, port B corresponds to the lower LED, and
port C (lines PCO-7) is used for inputs from the four push-
button switches.

Keystroke Functional Test 4.5.4.

4-118

Part A:

1.

Initialize the Parallel I/O functional block using the WRITE

- key with the following commands:

WRITE DATA 89 TO ADDR 4006
. {ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 4000
. {ADDR OPTION: I/O BYTE)
WRITE DATA FF TO ADDR 4002
. {(ADDR OPTION: I/Q BYTE)

Use the WRITE key to write values to the PIA chip. Read

the resulting numbers on LED A. The values to be written
and the results to be displayed are shown in the Response
table in Figure 4-44.

WRITE DATA <see response table> TO ADDR 4000
. (ADDR OPTION: I/C BYTE)

Now use the WRITE key to write values to the PIA chip to
display numbers on LED B. The values to be written and
the results to be displayed are shown in the Response table
in Figure 4-44.

Paraliel 1/O

WRITE DATA <see response table> TO ADDR 4002
{(ADDR OPTION: I/O BYTE) .

Part B:

1. Use the READ key to read values resulting from pressing the
UUT keys 1 through 4. The response table in Figure 4-45
shows the values that should be read for each key pressed.

READ ADDR 4004 = <see response table>
(ADDR OPTION: I/Q BYTE)

4-119

Parallel I/O

Keystroke Functional Test (Part A)

CONNECTION TABLE
MEASUREMENT
- VISUAL INSPECTION
TEST AGCESS SOCKET LEDA

LEDB

STIMULUS AND RESPONSE TABLE FOR LEDA

LEDA SHOWS

2 A Sy Y

STIMULUS AND RESPONSE TABLE FOR LEDB

LEDB SHOWS

MRSy

4-120

T

Parallel 110

+5v +5V +8v +5v
READY 4.7K 4.7K 4.7 4.7K
CIACUIT s s 3w s
1]
82554 1
O PR A P
st [J s2 I:l 83 |;| o |:|
H aI eI 2
~ PUSH~BUTTON SWITCHES
BuS LEDB
Ri1 330 s
BUFFER Lszaa H 2 1 .
Ri2 330
pag} 18 2 fiax qylie 1 e
1402 2 L pa1[29 [Pyt £ - s | A13 330
B T E— i 2 10 ¢
1a01 8 Lo pa2r 20 143 1yaLLd]
¥
000 3435, i 7 T]2n1 2vi 1 B0 28 4 14]3¢
100 33k pas] 23 3]aaa ava RIS 330 3
B g el es o
-l 3% ro:z Pa? 1 zae 2ve y MIE 330 5 , e
1005 29 19
— . e~
“&_,—2832 FEU‘E 1 P17 330 5 4y
1007 27 j
7 LS24a Iy A18 330 2 8 ‘!
PaD|4 2 f1ay 1ys| 38 HPBUB2-7610
S] Pay 142 avg[l8 .
PAg 1A3 1v3[id LeDA
TAEAD -] PA3 144 1vall2 U3
Pasfd aa1 2v1 s 830 5 4 ey
—pﬂ—hig—iﬁ pas[39 2a2 ava
Pag| 38 243 2v3 3 P23 3w , 43
BB reser parl A, a4 2y T . L
iy 1 A24330 45 49 5
[EY] 18] 0]
ADDAESS PRISLT awa-2 vag i1 R IW 5 4 4 1) 5V
DECCDE (ra/ 15 i FE7 380 5 g 4. | 3
AzB 330
L 22t
1 A28 330 z 11 g
CLOCK ANO RESET [-m-RESET 1_R03W 5 g g4
HPBAB2-7610

Figure 4-44: Parallel /O Functional Test (Part A)

4-121

Parallel VO

Keystroke Functional Test (Part B)

CONNECTION TABLE

51 TEST ACCESS SOCKET
52
53
54

STIMULUS AND RESPONSE TABLE FOR LEDA

DATA READ AT ADDRESS 4004

So~N@mOoOMm™M

./-'-\"

4-122

Parallel /O

+5v +8v +8v +3V
READY 4.76 4.7€ 4.7K 4.7K
3 a
CIRCUIT A R6 A7 He
8255A 1 1 1
§ T -
prolid I
pe3 1S |
80285 PCiS
HICROPROCESSOR poaj il
= FENT
[EEE
pCgLil ®C
e o J;, PUSH-BUTTON SWITCHES
aus FS.%B
BUFFER 1 A11330 o 4GNS
L5244 .
] o PP ey PR PR L UM
[Ja02 B8 L re1[38 A_{1a2 1v2 A13 230
[TAGT T8 ¢ pa2[ED 143 1ya[14 4 2 10 cied
#83 [TYEZIEE: AL4 330
1’%—?;00 paa[EZ 281 2v1 1 28 4 .ﬂ"""
L ——
oot T fHEn 2az 2Y2 , RI5 93¢ 5 5 o 3
el (i1 1] 25 |
w2003 31
1004 36 gf Pa7 3 A16 330 2 2 fk
[1008 89
-— =T
ioee 2P LRI 8y
1007 27
1907 7]
b7 Lszaa , A3 4 5 o4
PAD|4 1a1 1vifi8 HPEOBR-7610
5465 PAL 1a2 1va[10
TS PAR| 143 gr3pis LEDA
- - 2 Vo T R N A19 330 Ls3
Paa QAL avi 1 2 s
o THRTTE 36 55R PAs{39 242 ava)
Pagl38 2a3 2v3 g F23330 3 43 by,
35 keser pa7[3Z Zhd 2¥4 1
- ﬁ“g ; A4 930 5 4 ™
ADDRESS PETELT awane 1 uaz s A29330 5 5 4 sals8Y
DECODE 2 15 R27 330 ' 3
r" ' 2 7 sy
y R8O35 o5
1
3 R28 330 2 11 gl
CLOCK AND RESET |aBESET , F0IW 5 g an.
HP50B2+-7810

Figure 4-45: Parallei /O Functional Test (Part B)

4-123

Paralle! I/O

Programmed Functional Test 4.5.5.

4-124

The test_pia program is the programmed functional test for the
Parallel I/O functional block. The program asks the test operator
to check the visual properties of the LEDs that are driven by the
PIA chip and also to check the mechanical operation of the
pushbutton switches.

The program displays a message to the operator to watch LED A
while the program displays numbers 1 through 9 on it. The
operator is prompted to acknowledge proper operation or failing
operation, If the LED fails, the gfi test command is used to test
the LED drivers. If the LED drivers fail, GFI takes control and
backtraces to the source of the failure. The same operation is
then repeated for LED B. '

Next, the operator is prompted to press key 1. The program
polls the PIA chip and determines when the operator has pushed
the key 1 button (if the key and the PIA are working properly).
If the PIA cannot sense that the operator has pressed the key, the
operator is instructed to press a 9100A/9105A key to indicate a
failure. When the operator indicates a failing key, the gfi rest
command is used to verify correct signal levels at the key output.

If a failure exists, GFI takes control and backtraces to the source

of the failure. The same operation is repeated for keys 2, 3 and
4.

program test pla

! FUNCTICNAL TEST of the PARALIEL I/0 functional block.

I

I 1
! This program tests the PARALLEL I/0 functional block of the !
! Demo/Trainer. The two LEDs and the four pushbutton switches are !
! tested. The test operator ls prompted to wisvally inspect the LEDs !
! as the LEDs count a serles of numbers, . !
r

1

1

1

1

keys (key_number) Test Demo/Trainer pushbutton
key key_number, Prompt test !
operator to push the key. !
]
leds {led_addr, led name) Test Demo/Trainer LED led name!

! which is driven by the PIA and!
! - has the address led addr. !

1
¥
!
1
1
1
!
! TEST FUNCTIONS CALLED:
H
1
1
!
!
1
1

T

AT

Parallel 1/Q

!!!lII!I!!II!!l1II!II1ll!lllIll!ll1llIlllIIII!!I!IIIII!ll!ll!lll!llll!lt!
| Functions I
llI!!ll[ll[1I!!IIllI!lIIII!II!II!!I!!!lll!II!lIIII!II!I!!llll!!ll[!l!ll!l

function keys (keynum)

declare numeric keynum | Number of key to test,
declare string nomm = #\1B[Om" ! Normal video escape string
declare string rev = "\1B[0;7m" | Reverse video escape string

declare string entry
daclare string fall = »»
declare global numeric tib
declare global numeric tii

mask = setblt (keynum - 1)

loop until fail = chr($D) ! leop until YES key
print on tlb ,"\nlPress *, rev," UUT KEY ", keynum," *,norm," pushbutton®
print on tlb ,"Press any 9100 key If test is stuck®
leop until {poll channel t1i, event "input") =1
1f {(read addr $4004} and mask) = 0 then return

end loop

loop until (poll channel t1i, event “input") = 0 ! Flush input buffer
input on t1i ,entry

end loop

print on tlb ,"\nlPress ", rev," YES ",norm," to fall KEY ", keynum, " test,"
print on tlb ,"Press "+rev+" NO “Hporm+” to continue key test,”
input en t1i ,fail

end loop

print on tlb ,"\nl\nl"

fault | Fall Key test (set termination
end function ! status of function to fall.

!!!!!!l!!!!!l!!!!!!!!!![!!!!!l!!!!Il!!!lI!!!!ll!|!!l!!I[!!!!l!!!l!!l[!!!l

function leds(led_addr, led_name}
declare numeric led addr
declare string led name
declare string key
declare string norm = “\1B[Om"
declare string bold = "\1B[1m"
declare string rev = "\13[7m"
daclare string clear screen = "\1B{2J"
declare string no_auto_linefeed = "\1B[20h%
declare global numeric tli
declare numeric array [0:10] numbers

nurbers [0] = $CO \ nunbers [5) = $92
numbers [1] = $F9 \ numbers (6] = $82
numbers (2] = $A4 \ numbers [7] = §F8
numbers [3] = $BO A numpers [B] = $80
numbers [4] = $99 \ nurbers [9] = $93
NO = chri{$r} \ YES = chr{ $D)

print norm, clear screen, “Watch LED ", led name, " count®

print “Press ", rev, " ENTER ", nomm, " key to start LED counting,"
input key

print clear screen

for 1 =0to 9
write addr led _addr, data numbers [1)
walt time 500

next

4-125

Parallel /O

write
print
print
print
print

addr led addr, data 57F
clear sereen, “\1B[201"
“\1B[1;1fDid 1ED ", led name, " display ALL segments off, then"
"\1B[271fdigits 0 to 9, then only the Decimal Point 2"
"\1B[3;fpress: "+rev+" YES "+norm+® or “+rev+" NO “+norm

loop until key = YES or key =~ NO
input on tli ,key

if key = NO then fault
end loop
write addr led addr, data $FF \ print no_auto_linefeed,clear_screen

end function

tlh =
£ll =

cpen device "/teyml", as “update", mcde "buffared“
open device "/terml", as “ipput”, mode "unbuffered"

execute pla_init(}

if leds (54000, "A"} fails then fault 'PIA LED A failed' \ return
if leds ($4002, "B"} fails then fault 'PIA LED B failed' \ return

if keys(l} falls then fault 'PIA KEY 1 falled' \ return
if keys(2) fails then fault 'PIA KEY 2 falled' \ return
if keys(3) falls then fault 'PIA KEY 3 falled* \ return
if keys (4} falls then fault 'PIA KEY 4 falled* \ return

end program

Stimulus Programs and Responses 4.5.6.

4-126

Figure 4-46 is the stimulus program planning diagram for the
Parallel I/O functional block. The Parallel I/O stimulus
programs only measure the electrical parameters of the Parallel
I/O circuit; the visual properties of the LEDs are not measured.

The ram_data stimulus program outputs data from the PIA onto
the data bus. The pia_leds stimulus program exercises outputs
going to the LEDs. The key 1, key 2, key 3, and key 4

stimulus programs monitor the operation of the four numbered
pushbutton switches.

All the stimulus programs execute the pia_init program before
any measurements are made on the PIA circuitry.

Parallel /O

(This page is intentionally blank.)

4-127

Parallel VO

Stimulus Program Planning

INITIALIZATION PROGRAM: PIA_INIT

INITIALIZES THE PIA PORT

MEASUREMENT AT:

(NONE}

4-128

Parallel I/O

+5V +5v +8v +BY
READY 4,7% 4.7 4T 47K
CIRCUIT a8
Ba55A
*REA 3
PCo)
80286 et
MICROPROCESSOA o 51 IJ s2 h 53 |:| & I]
poal 43 _HC
b HG aI zI EI 2T
HC
3 b T L, PUSH-BUTTON SHITCHES
Bus LEDB
Uaz
ALy 330
BUFFER 1 Biey
" 2
1ap2 8 |ay ng F
o LADL 9 Tag Paz B L
Pa3 8 +BY
1000 ETY'™ Pad 1 14
1004 D1 Pas 3
- 1002 i‘gnz PB§| ¥
003 ihs By
1004 — by C
*1hos [7])
&> T006 25 s: é = ol 11
1067 a7}
0 27 b7 Lsaaa 1 R8I0 g 5 gy
PAOL 2 liag sv1 HP50B2-7610
5 &5 Pas 4 {iaz 1vg
PaZ 143 1Y3 LEDA
1READ 5 G PA3 1AM 1Y¥4 Va3
T PAd| 2a1 2v1 1 P18 330 g 4 a r
o LHRITE 35 WA PaB) 2A2 ava
PAB 5} pa3 2Y3) 1 P23 330 g 43 p,,
35 RESEY pay) 2a4 2v4ld
g Wy 3 R4 330 o .o)
26
AODAESS FPTSCT nz-a iﬂ usz i AD330 g g4 4. e
e 4
OECODE ?z/ 15 s FRT 330 g 5 oo] 3
H
g P28 330 g 5 4.
™
1 R2% 330 2 1
CLOCK AND RESET |m-PESET 1 R0 g 5 4
HPEDB2-7610

Figure 4-46: Parallel /0 Stimulus Program Planning

4-129

Parallel I/O

program key 1

ELEEL L L L L R L L b LD LI LIt IErtraere

! STIMULUS PROGRAM checks KEY 1 of PIA circuit,

I Stimulus programs and response files are used by GFI to backtrace

I

from a falling node. The stimulus program must create repeatable UUT

TEST PROGRAMS CALLED:
pla_init)

GRAPHICS PROGRBMS CALLED:
{none} ’)

Loecal Constants Modlfied:
CARRAGE_RETURN

local Varlables Modified:
devname .
input_str
state
finished

RSNTERNERESRRNERSRRTNTNY

Matches a carrage return input.

. Measurement device
Input from keypad
Level returned from measurement

f
!
|
!
!
|
1
1
!
1
1
!
1
!
!
1
!
|
I
1

State of leop looking for condition !

IIllrlllllll'l|f1||t1![[IlllllIlI?Il‘1l|lII

declare global numeric finished = 0
declare string CARRAGE_RETURN = "¢

declare string lnput_str

declare numeric state = ¢

declare numeric high = 4
flnished = 0

PIRrpgleabrrarrpnrertaeeatael

Let GFI determine the testing device.

1f (gfi contrel) = "yes"
devname = gfl device

then

1f {gfi refy = ™U31" then pinnum = 14

else
devname = */probe"
end if

print "Stimulus Program KEY 1"

{continued on the next page)

Figure 4-47: Stimulus Program (key_1)

4-130

I
SRS

e,

~

Parallel VO '

! Setup measurement device and prompt operator.

podsetup 'report power®' "off*

podsetup 'report forelng' "off"
podsetup ‘report intr' “offw

podsetup 'report address* “off"
podsetup 'report data' “off"

podsetup 'report control' “off*

reset device devname

execute pla init ()

setspace space (getspace space "i/0", size “byte")
sync device devname, mode "int*

tlup = open device “/terml", as “"update”

! Walt for a high. Leave program if <ENTER> key 1s pressed,

loop until state = high
arm devica devname \ readout device devname
1f devname = "/probe" then
state = level device devname, type "async"
else
state = level device devname, pin pinnum, type "async"
end if
if (pell channel tlup, event "input™) = 1 then
input on tlup sinput_str
1f input_str = CARRAGE_RETURN then return
end 1f
end leop

! Start response capture, End when POD detects reset.
arm device devname
strobeclock device devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 1\1B[Om"™
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop untll finished = 1
if ((read addr $4004) and 1} = 0 then
walt time 2 ! De-bounce,
strobeclock device devname
finished = 1
else 1f (poll channel tlup, event ™input®) = 1 then
input on tlup ,input_str
if input str = CARRAGE_RETURN then finished = 1
end 1if
end loop
readout device devname

print "\nl\nl"
end program

Figure 4-47: Stimulus Program (key_1} - continued

4-131

Parallel 1/O

STIMULUS PROGRAM: KEY_1

DESCRIPTION:

Hode Learned
signal Src With SIG
R5-1 PROBE 0002
R5-1 I/0 MODULE 0002

Figure 4-48; Response File tkey 1)

4-132

SIZE:
Response Data
Async Clk Counter
IVL INVL Mode Counter ‘Range
1 0 TRANS
1 0 TRANS

78 BYTES

Priority
Pin

Pl

Parallel VO

program key 2

R NN N e R R RN Ry R R R N SN NN NS NSNS N AN RN S UR NN EL)

1

STIMULUS PROGRAM checks KEY 2 of PIA circuit. !
!

Stimulus programs and response files are used by GFI to backtrace 1
from a failing node. The stimulus program must create repeatable UUT |
activity and the response flle containg the known-good responses for !
the outputs in the UUT that are stimulated by the stimulus program. 1
!

TEST PROGRAMS CALLED: t
pla_init) 1

!

GRAPHICS PROGRAMS CALLED: [
{none) 1

!

Local Constants Modlfied: !
CARRAGE_RETURN Matches a carrage return input, t

!

Local Variables Modified: !
devname Measurement device 1
input_str Input from keypad !
state Level returned from measurement t
finlshed State of loop looking for condition !
R R R N N AR RN N NN S R RN NN RSN R SRR RNEE

declare
declare
declare
declare
declare

glcbal numeric finished = 0
string carrage_return = "
string str

numeric state = 0

numeric high = 4

finished = 0

Let GFI determine the testing device.

if (gfi

control) = "yes" then

devname = gfi device
1f (gfi ref) = "U3L" then plnnum = 15

else

devname = "“/probe"

end if

print **Stimulus Program KEY 2

(continued on the next page)

Figure 4-49: Stimulus Program (key_2)

4-133

Parallel /O

! Setup measurement device and prompt operator.

reset device devname

execute pla_init({}

setspace space (getspace space "1/o", size "byte")
sync device devname, mode "int"

tlup = open device "/terml", as "update"

! Walt for a high. Leave program if <ENTER> key 1s pressed.

loop until state = high
arm device devname \ readout device devname
1f devname = "/probe" then
state = level device devname, type "async"
else
state = level device devname, plin plnnum, type "async"
end if
1f {pell channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage_return then return
end if
end loop

| Start response capture. End when PIA detects line low,

arm device devname
st robeclock devlice devname
print on tlup ,"WHILE MEASURING, Press \1B[7mDemo UUT KEY 2\1B[Om"
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished =1
1f ({read addr 54004) and 2} = 0 then
walt time 2 ! De-kounce.
strobeclock device devname
finished = 1
else 1f {poll channel tlup, event "input"} = 1 then
input on tlup ,str
if str = carrage return then finished = 1
end if
end loop
readout device devname

print "\nlinl"
end program

Figure 4-49: Stimulus Program (key_2) - continued

4-134

P

Parallel /O

STIMULUS PROGRAM: KEY 2
DESCRIPTION:

Node Learned
Signal Src With 581G
R6-1 PROBE ‘0002
~Ré6-1 I/0 MODULE 0002

Figure 4-50: Response File (key_2)

SIZE:
Response Data
Async Clk Counter
LVL 1IVI, Mode Counter Range
1 & TRANS
1 0 TRANS

78 BYTES

Priority
Pin

4-135

Parallel I/O

RN R R R R R S R R R R S R R R R N NN S R AR SRR R RN SRR R SRR
! STIMULUS PROGRAM checks KEY 3 of PIA circuit. t
| - !
| Stimulus programs and response files are used by GFI to backtrace t
! from a failing node. The stimulus program must create repeatable UUT !
| activity and the respense file contains the known-good responses for !
! the outputs 1n the UUT that are stimulated by the stimulus program. !
| 1
! TEST PROGRAMS CALIED: !
| pia_init () !
! !
! GRAPHICS PROGRAMS CALLED: !
! {none) !
I 1
! Local Constants Modifled: 1
! CARRAGE_RETURN Matches a carrage return input.

1 1
! Local Variables Modified: 1
! devname Measurement device

1 Input_str Input from keypad !
H state Level returned from measurement !
H finished State of loop looking for condition !
IR R R N R N S RN N AR AR RS RN RN Y]

[SRER! RN NN NN N NN RN RN N NN N RS N R RS IR RN R AR RSN RN E AT

I Main Declarations t
TPrrrn R EILIEIIaInL ![r]llllllllr1l|!![]!][ll!l|lll

declare global numeric finished = 0
declare string carrage_return = "
declare string str

declare numeric state = 0

declare numeric high = 4

finished = 0

IR
! Maln part of STIMULUS PROGRAM]
r1|1||r1|r|||[1;1|||1|rr|lls||||||r||r|1|r1|||1|!|||1|r|||=|””[_|!

! Let GFI determine the testing device.

1f {gfl control} = "yes" then
devname = gfl device
if {gfi ref) = "U31" then pinnum = 16
else
devname = "/probe"
end if
print "Stimulus Program KEY_3"

{continued on the next page)

Figure 4-51: Stimulus Program (key_3)

4-136

—

e

Parallel I/O

! Setup measurement device and Prompt operator.

raset device devname

execute pla_init ()

setspace space (getspace space "i/o", size "byte")
sync device devname, mode "int®

tlup = open device “/terml", as “update"

! Walt for a high. ILeave program if <ENTER> key is pressed.

loop unti)

state = high

arm device devname \ readoyt device devname
if devname = "/probe" then
state = level device devname, type “async”

else

state = level device devname, pin pinnum, type “"async®

end If

1f {poll channel tlup, event "input™} = 1 then
input en tiup ,str
Af str = carrage return then return

end if
end loop

! Start response capture. End when POD detects reset.

arm device

devname

strobeclock device devname

print on tlup , "WHILE MEASURING, Pregs \1B[7mDemo UUT KEY 3\1B[Om#
print en tlup ,"Press 9100 ENTER key 1f test is stuck, "

locp untll finished = 1

1f {{read addr $4004) and 4) = 0 then
walt time 2 ! De-bounce.

st
It
else

robeclock device devname
nished = 1
1f (poll channel tlup, event "input"} = 1 then

input en tlup ,str
if str = carrage_return then finished = 1
end 1f

end loop

readout device devname

print "\nl\n1»

end program

Figure 4-51: Stimulus Program {key_3) - continued

4-137

Parallel VO

STIMULUS PROGRAM: KEY 3

DESCRIPTION: SIZE: 78 BYTES
Response Data
Node Learned Async ClK Counter Priority
signal Src with SIG VL IVL Mode Counter Range Pin
R7-1 PROBE 0002 1 0 TRANS
R7-1 I1/Q MODULE 0002 1 0 TRAaNS

Figure 4-52: Response File (key_3)

4-138

Parallel //O

e

program key 4
!'![!!!!!!l!!!!!l!!!!!!!!!!!l!!!!!!!!!!!!l!!!!!!Il!!!!l!!ll!!!!l!!!!!!ll!
! STIMULUS PROGRAM checks KEY 4 of PIA circuit. I
! 1
! Stimulus programs and response files are used by GFI to backtrace !
! from a falling node. The stimulus program must create repeatable UUT |
! activity and the response file contains the known-good responses for
I the.outputs in the UUT that are stimulated by the stimulus program. £
! !
! TEST PROGRAMS CALLED: !
! pla_init) 1
! !
! GRAPHICS PROGRAMS CALLED: !
1 (none} !
! !
! Local Constants Modified:

! CARRAGE RETURN Matches a carrage return input. !
! !
! Local Varlables Modlfied: !
' devname Measurement device !
! input_str . Input from keypad 1
! state Level returned from measurement I
! finished State of loop locking for condition !
!'!!!!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ll!!!!!!1!!!!!!!!!!1!!!!!!

declare global numeric finlshed = 0
declare string carrage return = "
declare string str

declare numerig state = 0

declare numeric high = 4

Einjshed = 0

! Let GFI determine the testing device.

If (gfl control) = “yes" then
devname = gfi device
1f {gfi ref}) = “U31" then pinnum = 17
else
devname = "/probe”
end if
print "stimulus Program KEY 4"

(continued on the next page)

Figure 4-53: Stimulus Program (key_4)

4-139

Parallel VO

1 Setup measurement device and prompt operator.

reset device devname

execute pla init(}

setspace space {getspace space “1/o", size “byte")
sync device devname, mode “int"

tlup = open devlce */terml®, as “"update"

1 Wwait for a high. Leave program 1f <ENTER> key is pressed,

loop untll state = high
arm device devname \ readout device devname
if devname = “/prcbe* then
state = level device devname, type "async®
else
state = level device devname, pln pinnum, type "async"
end 1f
if {(pell channel tlup, event ™lnput") = 1 then
input on tlup ,str
if str = carrage return then return
end if
end loop

1 Start response capture. End when BOD detects reset.
artn device devname
strobeclock device devname
print on tlup ,“WHILE MEASURING, Press \1B(7mDemo UUT KEY 4\1B[Dm"
print on tlup ,"Press 9100 ENTER key if test is stuck."
loop until finished = 1
if {(read addr $4004) and 8} = 0 then
wait time 2 ! De-bounce.
strobeclock device devname
finished = 1
else If (poll channel tlup, event "input") = 1 then
input on tlup ,str
if str = carrage return then finished = 1
end if
end loop
readout device devname

print “\nl\nl"
end program

Figure 4-53: Stimulus Program (key_4) - continued

4-140

P

Parallef /O

STIMULUS PROGRAM NAME: KEY 4

DESCRIPTION: SIZE: . 78 BYTES
Response Data
Node Learned Async Clk Counter Priority
Sigral Src With 5IG IVNL IVL Mode Counter Range Pin
RB-1 PROBE 0002 1 0 TRANS
RB-1 I/0 MODULE 0002 1 0 TRANS

Figure 4-54: Response File (key_4)

4-141

Parallel 1/O

program pla data

I
STIMULUS PROGREM outputs data from the PIA onto the bus.

Stimulus programs and response files are used by GFI to backtrace
from a failing node, The stimulus program must create repeatable UUT
activity and the response flle contalns the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

in the kernel area of the UUT.

These programs create activity wlth
or without the ready circult working properly. Because of this, all

the stimulus programs In the kernel area must disable the READY input !

to the pod, then perform the stimulus, then re-enable the READY input !

to the pod. The 80286 mlicroprocessor has a separate bus controller;

for this reason, disabling ready and performing stimulus can get the

bus controller out of synchronization with the pod. Two fault

handlers trap pod timeout conditions that indicate the bus controller |

is out of synchronization. The recover{} program is executed to

resynchronize the bus controller and the pod.

t
!

!

1

1

1

1

1

t

t

1

1

1

|

1

1

]

1

1

!

| TEST PROGRAMS CALLED:
f recover ¢]
!
1
1
t
|
1
1
1
I
r
r
1
1
1
1
1
1
|
1
!

pla_init {)

GRAPHICS PROGRAMS CALLED:
{none}

ILocal Varlables Medifled:
devhame

Global Variables Modified:
recover tlmes

1
1

1

1

1

1

1

!

This stimulus program is one of the programs which creates activity !
!

1]

]

1

1

1

1

1

1

I

I

The 80286 microprocessor has al
bus controller that is totally!
separate from the pod. In 1
some cases the pod can get out!
of sync with the bus control- |
ler. The recover program !
resynchronizes the pod and the!
pus centroller. !

Initalization program for the
8255, Sets port A and B to
output wlth port C to input.

Measurement device

1
1
1
I
r
1
I
r
H
H
1
1
Reset to Zero !
1

{continued on the next page)

Figure 4-55: Stimulus Program (pia_data)

4-142

N

Parallsi /O

R N e PR N R R NN AR RN RN A R AR RN RN A R RS NN AR A SRR A TN RTANREL
1 FAULT HANDLERS: !
R R e R E Ry RN RN NN N AN R N R R N R R A N AR AR R R A RN AR ER TN ONY

handle pod_timeout enabled line
recover|(}

end handle

handle pod_timeout_recovered
recover ()

end handle

declare global numeric recover times
recover times = 0

! Let GFI user select which I/0 module to use

if {gfl control} = “yes" then
devname = gfi device

else
devname = "/modl®

end 1f

print "Stimulus Program PIA_DATAM

Initialize the PIA and setup the measurement device.

reset device devname

pla_init()
setspace space (getspace space ™1/o™, size “byte")
write addr $4002, data SRA ! set port B to known value,

sync device devname, mode “pod!
sync device "/pod”, mode "data®

Present stimulus te the UUT, read PIA port B register onto data bus.
axm device devname I Start response capture.

read addr $4002 ! read port B

wrilte addr $4002, data $55

read addr $4002
readout device devname ! End response captura.

end pla_data

Figure 4-55: Stimulus Program (pia_data) - continued

4-143

Parallel /O

STIMULUS PROGRAM MAME: PIA DATA

DESCRIPTION: SIZE: 326 BYTES
Response Data
Node Learned Async Clk Counter Priority

Signal Src wWith SIG LVL IVL Mode Counter Range Pin

731-34 PROBE 0003 ’ TRANS

U31l-34 I/0 MODULE 0003 TRANS u21-5

U31-33 PROBE 0004 TRANS

U31-33 I/0 MODULE 0004 TRANS V21~-5

U31-32 PROBE 0003 TRANS

U31-32 I1/0 MODULE 0003 TRANS u21-5

U31-31 PROBE 0004 TRANS

U3l=-31 1/0 MODULE 0004 TRANS v21-5

F31-30 PROBE 0003 TRANS '

U31-30 I/0 MODULE 0003 TRANS U21-5

U31-29 PROBE 0004 TRANS

U3i-29 1/0 MODULE 0004 TRANS v21-5

U3l-28 PROBE 0003 TRANS ’

U3i-28 I1/0 MODULE 0603 TRANS U21-5

U31-27 PROBE 0004 TRANS

U3l-27 I/0 MCDULE 0004 TRANS U21-5

Figure 4-56: Response File (pia_dala)

4-144

J—

Parallel YO

program pla leds

STIMULUS PROGRRM to exercise PIA output signals.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable JUT
! activity and the response file-contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program,

1

I

I

1

1

!

!

| This stimulus program uses rampdata at the PIA output port addresses
! to toggle port B.

1

t TEST PROGRAMS CALLED:

t pia_init (} Initalization program for the
1

1
1
!
!
1

8255, Sets port A and B to
output with port C to input.

! GRAPHICS PROGRAMS CALLED:
{none)

1 Local Varlables Modifled:
t devname Measurement device

! Let GFI user select which I/0 medule to use

if {gfi contrel} = “yes" then
devpname = gfl device

else
devname = "/modl"

end 1f

print “Stimulus Program PIA LEDS"

! Initialize the PIA port and setup measurent device.

reset device devname

execute pla init ()

setspace space (getspace space "1/o", slze “word™)
syne device devname, mode "“pod"

sync device "/pod", mode “data"

! Present stimuelus to the UUT
arm devlice devname ! Start response capture.
rampdata addr $4000Q, data 0, mask SFF
rampdata addr $4002, data 0, mask $FF
readout device devname ! End response capture

end pia_leds

Figure 4-57: Stimulus Program (pia_leds)

4-145

Parallel 1/O

STIMULUS PROGRAM NAME: PIA LEDS
DESCRIPTION:

Node
Signal Src

U31-4
U31-3
U31-2
U3l-1
U3l-40
U31-39
U3l-3s
U31-37
U3l-18
031-19
031-20
§31-21
031-22
031-23
U3l1-24
U31-25
U46-18
U46-18
U46-16
U46-16
U46-14
U46-14
U46-12
U46-12
U46-9
U46-9
U46-7
U46-7
U46-5
Ud6-5
U46-3
U46-3
u32-18
U32-18
U32-16
U32-16
U32-14
U32-14
U3z2-12
U3z-12
Uu3z-9
032-9

4-146

SIZE: 1,134 BYTES
Response Data
Learned Async Clk Counter Pricrity
With sSIG IVL LVL Mode Counter Range Pin

I1/0 MODULE EFF7 10 TRANS
I/0 MODULE 7628 10 TRANS
I/0 MODULE 790E 10 TRANS
1/0 MODULE 49cCB 10 TRANS
I/0 MODULE CO4E 10 TRANS
1/0 MODULE 1D3A 10 TRANS
I/0 MODULE A1C7 10 TRANS
I/0 MODULE 63EB 10 TRANS
I/0 MODULE D37A 10 TRANS
I/0 MODULE Al21 10 TRANS
1/0 MODULE 6AFA 10 TRANS
I/0 MODULE BSFC 10 TRANS
I/0 MODULE A71E 10 TRANS
I/0 MODULE DAF9 10 TRANS
I/0 MODULE 23EF 10 TRANS
I/0 MODULE 2F53 10 TRANS
PROBE D37A 10 TRANS
I1/0 MODULE D37A 10 TRANS
PROBE Al21 10 TRANS
I/0 MODULE Al2l 10 TRANS
PROBE G6AFA 10 TRANS
I/0 MODULE 6AFA 10 TRANS
PROBE BSFC 10 TRANS
I/0 MODULE BS5FC 10 TRANS
PROBE ATIE 10 TRANS
I/0 MODULE AT1E 10 TRANS
PROBE DAF9 190 TRANS
I/0 MODULE DRF9 10 TRANS
PRCBE 23EF 10 TRANS
I/0 MODULE 23EF 10 TRANS
PROBE 2753 10 TRANS
I/0 MODULE 2F53 10 TRANS
PROBE EFF7 10 TRANS
1/0 MODULE EFF7 10 TRANS
PROBE 7628 10 TRANS
1/0 MODULE 7628 io TRANS
PROBE 790E 10 TRANS
I1/0 MODULE 790E 10 TRANS
PROBE 49CB 10 TRANS
I/ MODULE 49CB 10 TRANS
PROBE CO4E 10 TRANS
1/0 MODULE CO4E 10 TRANS

{continued on the next page)

Figure 4-58; Response File {pia_leds)

o

‘Parallel /0

u32-7
U32-7
U32-§
U32-5
U32-3
u3z2-3
R11-2
R12-2
R13-2
R14-2
R15-2
Rl16-2
R17-2
R18-2
R19-2
R23-2
R24-2
R25-2
R27-2
R28-2
R29-2
R30-2

PROBE
I/¢ MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

1D3A
1D3a
Alc?
AlCT
63EB
G3EB
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596
4596

el e e

Coocoo

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-58: Response File (pia_leds) - continued

4-147

Parallel /O

program pla_init

SR RN R R R N RN LR RN R R RN RN RS RV RRNn NSRS RURR AR RN ARy,
INITIALIZATION PROGRAM to set up the PIA,

!
! t
! t
| TEST PROGRAMS CALLED: T
I (nene) T
! t
! GRAPHICS PROGRAMS CALLED:]
! (none} 1
I

.|f1|||!!l|1lll!!r1||Illflll|||fl|l|l|l|!!!!!rlIr!Il|r|l1||l|||'1|l'llllll!

! Set address space

setspace space (getspace space "i/o", size "byte"}

1 Initialize the PIA port

write data $89, addr $4006 ! SET CONTROL REG
write data SFF, addr $4000 ! CLEAR THE A REG
write data- $FF, addr $4002 | CLEAR THE B REG

end pla_init

Figure 4-59: Initialization Program (pia_init)

4-148

TN

P

Parallel IO

Summary of Complete Solution for
Parallel /0 4.5.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Parallel I/O functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in

this manual for each file.
UUT DIRECTORY
(Complete File Set for Parallel I/0)
Programs (PROGRAM).
TEST _PIA Functional Test Section 4.5.5
PIA_DATA Stimulus Program Figure 4-55
PIA_LEDS Stimulus Program Figure 4-57
KEY_1 Stimulus Program Figure 4-47
KEY_2 Stimulus Program Figure 4-49
KEY 3 Stimulus Program Figure 4-51
KEY_ 4 Stimulus Program Figure 4-53
PIA_INIT Initialization Program Figure 4-59
Stimulus Program Responses (RESPONSE):
PIA_DATA Figure 4-56
PIA_LEDS Figure 4-58
KEY_1 Figure 4-48
KEY 2 Figure 4-50
KEY_3 Figure 4-52
KEY 4 Figure 4-54
Node List (NODE):
NODELIST Appendix A
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix B
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

4-149

Parallel '{e)

4-150

(This page is intentionally blank.)

e,

e

Serial 1O

SERIAL INPUT/OUTPUT FUNCTIONAL BLOCK 4.6.

Introduction to Serial VO 4.6.1.

The block diagram in Figure 4-60 shows a typical serial /O port
implemented with a UART (universal asynchronous receiver-
transmitter) surrounded by its direct support circuitry. For the
UART to function properly, all of the support circuitry in Figure
4-1 must function properly.

SIA (serial interface adaptor) chips typically implement all of the
UART block and most of the clock and interrupt blocks. On the
Demo/Trainer UUT, address decoding and interrupt generation
circuits are grouped as separate functional blocks and are
described later in Sections 4.11 and 4.13.

Considerations for Testing and
Troubleshooting 4.6.2,

Testing
The external I/O lines can be divided into two types:

¢ Serial lines,
®* Handshake and control lines.

Testing the handshake lines is straightforward. The status of
input handshake lines can usually be checked by reading a
register and testing the appropriate bit. Similarly, output
handshake lines can be toggled by setting and clearing 2 bit in an
output register. Testing can be done using the probe or by
connecting output lines back to input lines. Some SIA chips
need initialization before they respond properly.

Testing the serial input and serial output lines is usually done by

connecting the output back to the input, On the Demo/Trainer
UUT, this can be done by setting switches. In general, it is

4-151

Setial VO

Microprocessor (With Status Register) |

4-152

Address
Decoding

Clock

(Baud Rate Generator)

From » UART

Line Drivers
and Recelvers

—
External 110
o

Interrupt
Generaticn

Figure 4-60: Typical Serial /0 Port, With Support Circuitry

Paai

Serlal /O

preferable to wire a connector to perform the loopback. This
allows testing the entire interface, including the connector.

UART chips provide data buffers on their inputs. Therefore,
characters can be written to the output side of the UART and the
read at the input side. If this technique is used, two limitations
should be kept in mind:

® Since the input and output baud rates are usually derived
from the same clock, loopback testing will not test for
proper baud-rate timing.

. The UART must be initialized with the same transmit and
receive baud rate.

One approach to testing the baud rate clock frequency is to set up
the transmitter to send seven bits with no parity. Under these
conditions, when a null character (00 hex) is sent, the result will
be a pulse that is high for eight bit times (start bit and seven data
bits). If the probe is connected to a known-frequency clock
signal and the start and stop lines are connected to the serial
output, the baud rate can be computed. The start line should
cause counting to start on the first bit and the stop line should
stop the count at the end of the last bit. For example, on the
Demo/Trainer UUT, the 8 MHz clock on U1-5 (Figure 4-61)
can be probed and the start and stop lines from the clock module
can be connected to one of the serial output pins (U13-8 or U12-
7). Eight bits at 1200 baud (8/1200 sec) counting 8 MHz the
result should be about 53,333 (D055 hex) counts.

The procedures above do not test the interrupt generation block.
This circuitry, which is described in detail later in Section 4.13,
can be tested by individually enabling the interrupts that are of
interest and then stimulating them by exercising the UART. For
example, to test the character-received interrupt, perform the
following steps: '

1. Initialize the interface.

2. Enable the receiver interrupt (usually a bit in a
command register).

4-153

Serlal 1/0

3. With loopback wired, send a character.

4. Verify that the pod received an interrupt using the
readstatus TL/1 command. (This assumes that the
interrupt stays active until serviced.)

Here are some potential problems in testing serial I/O ports:

® The I/O module may load a crystal oscillator enough to
shift the frequency or make it stop oscillating.

* Some SIA chips will not send characters if their handshake
lines are in the wrong state.

* If aloopback test cannot be performed on your UUT, you
can use the RS-232 port on your 9100A/9105A to test the
serial I/O port on the UUT.

Troubleshooting

4-154

The central element of a serial }/O port is the UART or SIA chip.
If troubleshooting is started by clipping the UART, the problem
should be easily isolated. The UART either receives or
generates signals from all of the other circuit blocks. If all
inputs to the UART are good and all outputs are bad, the UART
is bad or its outputs are loaded. If an input is bad, the problem
can be traced into the circuitry that generated it. All of this is
done automatically in GFL

The serial input and output can be evaluated by writing a series
of characters and counting transitions. The Demo/Trainer UUT
stimulus programs for the serial I/O block work this way.

The Demo/Trainer UUT has built-in switches that loop the serial
outputs back to the inputs. If GFI troubleshooting is done with
the loopback in place, the nodelist must show this connection; if

Serlal VO

loopback is done at the conn;zctor, the appropriate pins of the
connector can simply be shown on the same node.

The probe has a special threshold level for testing RS-232
signals, which is set up with the TL/1 command:

threshold device "/probe", mode-"r5232"
or the operator's keypad command:
SET PROBE LOGIC INPUT LEVEL TQ RS232.

If a part has RS-232-level signals, it should be specified as a
probe device in the reflist for the UUT.

The gfi control TL/1 command determines when a stimulus
program is under GFI (or UFI) control. There are many
examples of its use in the stimulus programs that follow. When
a program is under GFI (or UFI) control, the gfi reference
function will return a string describing the device being clipped
or the pin being probed. The following TL/1 example shows
how the gfi ref command could be used in a stimulus program
to change the threshold levels if the components to be tested
require such a change,

if (gfi control) = "yes" then
str = gfi ref
if ((str = "U12-14") or (str = "Ul2-7")} then
threshold device "/probe", mede "rs232"
else
threshold device "/prche", mode "ttl"
end if
end if

Serial I/0O Example 4.6.3.

Figure 4-61 shows the serial I/O port on the Demo/Trainer
UUT. The DUART (dual universal asynchronous receiver-
transmitter), U11, receives serial data input from the keyboard
(RXDA/TXDA) and handles bidirectional signal flow with the
RS-232 port (RXDB/TXDB). Keyboard input must be at 1200

4-155

Serial I/O

baud. U12 acts as a level shifter, coupling TTL signal levels on
the Demo/Trainer UUT to RS-232 levels at the serial interface;
U12 uses a charge pump to shift levels from a +5V source.

The keystroke functional test that follows is not a complete test
of the RS-232 circuit. The keyboard receive, port 1 transmit,
and port 2 receive lines are not tested between the loopback
switch and the connectors. Also, the test assumes that the
interrupt functional block is good when testing the INT pin
(U11-24).

Keystroke Functional Test 4.6.4.

4-156

1. Initialize the Dual UART using the EXEC key with the
following command:

EXECUTE UUT DEMO PROGRAM R8232_INIT

2. Close switches SW4-4, SW4-5 and SWé6-4. Now the
Transmit line (Txd) is looped back to the receive line (RxD)
and transmitting a character on TxD will cause the UART to
receive a character on RxD: Then use the SETUP MENU
key with the following command to turn off reporting of
interrupts:

SETUP POD REPORT INTR ACTIVE OQFF

3. Use the WRITE and READ keys with the following
commands to test Port A of the DUART:

WRITE DATA 45 TO ADDR 2006
. {ADDR QPTION: I/0 BYTE)
READ ADDR 2006 =
.. (ADDR OPTION: I/0 BYTE)
The value read should be 45,

Serial I/O

4. Use the WRITE and READ keys with the following
commands to test the Transmit to Receive loopback of Port
B of the DUART:

WRITE DATA S5 TO ADDR 2016
(ADDR OPTION: I/0 BYTE)
READ ADDR 2016 =
(ADDR QPTION: I/0 BYTE)
The value read should be 55.

You may need to do the READ step up to three times to get
the expected value, since the read buffer can be stacked
three-deep. _

5. Use the WRITE and READ keys with the following
commands to test the RTS to CTS loopback of Port B of the
DUART:

WRITE DATA 0 TO ADDR 201A
(ADDR QPTION: I/0 BYTE})
WRITE DATA FF TQO ADDR 201C
(ADDR OPTION: I/0 BYTE)
READ ADDR 201A =
(ADDR OPTION: I/O BYTE)
Examine the hexadecimal value to make sure
bit 1 is a 0, Bit 0 is the LSB.
WRITE DATA FF TO ADDR 201E
(ADDR OQOPTION: I/0 BYTE)
READ ADDR 201A =
(ADDR OQPTION: I/0 BYTE)
Examine the hexadecimal value to make sure
bit 1 is a 1., Bit 0 is the LSB,

4-157

Serial 1/O

Keystroke Functional Test

CONNECTION TABLE

TEST ACGESS SOCKET SW6-4 TEST ACCESS SOCKET
SWd-4
SW4-5

STIMULUS AND RESPONSE TABLE FOR DUART PORT A

e

STIMULUS AND RESPONSE TABLE FOR DUART PORT B

DATA RECEIVED FROM PORT B
(ADDRESS 2018)

55

STIMULUS AND RESPONSE TABLE FOR TIMER INTERRUPT

BYT 1 LEVEL AT ADDRESS 201A
(BIT 0 IS LSB)

LOW
HIGH

4-158

Serial VO

Iy
READY nas Jnaz JASCLI KEYBOARD
GIRCUIT A N CONNECTOR
1 .]
LS14 Ls14
TEADY [L)
uia usa '
5507 m-a
c? [a1
47pF T 47oF
¥4 DINS
BUS
BUFFER +i0v
QUART \
26683 R2L }R20 L[R2 ;::
1at1 2 [x6 meoal2S 3K FaeK
1402 4 1ax Txoa |33,
1403 [
IA0A g PSP Hax2az v
Txpafid — U1 ¥
o8l 5 > AS232-C
1000 28 14 12 13
Y S8 ATES|
Y 1 <3 POAT 1
s o 1002 27| pa 1p0 |8 _HC af ., laa vz
1003 39 nsy P2 |40 WE . 1 Y ey
1604 26 | 0 I3 [3_HE €15 8l o1] 3 Jay
1003 201 o Ips [22_HC AT 3 5 p s
1006 25 FENT E 1 4 2R4 4
le»-J006 . #8]gs Ips -y Spur GHD
. » 1007 Y e 1pa [41HE . " 3 = 47 oy b
TRATTE 2 lWa oro |22 NG A2 4 ['EF] Rra
TRERT 10 dag or2 |31 MG r| -0V e
I . op3 38 2auF 4 017
T/OSLY__ 39 7 o4 [20
ops [16_KE 22uF
BESET 38 hecer ppg [ZD_HG
oP7? 17
EL1
37 Ta 24
ADDRESS w1 SK4-5
DECODE v 1
| 47K
4on v 2
[e TRER
3.6664 1z] 70T z
ce 1]]
CLOCK AND RESEY L
10pF 10pF INTERAUPT
CIRCUIT
INTA '
IRTPADY.

Figure 4-61: Serial 1O Functional Test

4-159

Serial 1/0

Programmed Functional Test 4.6.5.

4-160

The test rs232 program is the programmed functional test for
the Serial I/O functional block. This program also tests for
interrupt conditions generated by the Serial I/O circuit.

First, the program initializes the DUART U11 and prompts the
test operator to close the loopback switches which connect Port
A transmit to Part A receive, connect Port B transmit to Port B
receive, and connect Port B Request To Send (RTS) to Port B
Clear To Send (CTS).

Next, Port A is checked by transmitting a character and
examining the receive buffer for the same character,

And finally, a character is transmitted on Port B which also
generates an interrupt condition. Two pod programs called
Jrc_int and rd_cscd are executed to check proper operation of the
interrupt logic. After that, the receive buffer is examined for the
same character that was transmitted. This clears the interrupt
condition. Then the frc_int program is executed again to make
sure the interrupt condition has been cleared. A register in the
DUART is then checked to see that the RTS/CTS loopback
worked properly.

If any of the above operations fail, the gfi rest command is used
to find a failing signal. GFI then takes control and backtraces to
the source of the failure.

If a problem is detected in the interrupt circuit, the st intrpt
program (programmed test of the Interrupt Circuit functional
block) is executed.

T

Serial VO

program test_rs232

RN R e R R RN RN A NN R R A DR DN RN R R SR R R R AR R AN AR Y
FUNCTIONAL TEST of the SERIAL I/0 functlonal block.

I
!
!
This pregram tests the SERIAL I/0 functional block of the !
Demo/Trainer. The two RS-232 ports are tested by setting three Dip !
Switches to loop back the two ports (SW4-4, SW4-5 and SW6-4 loop back !
ports A and B). The SERIAL I/0 functional block also outputs two !
interrupt request signals. This program also checks the interrupt t
ecircultry. !
!
!
!
1
!
!

fre int {) POD PROGRRM forces repetitive
interrupt acknowledge cycles
and returns first interrupt
vector fouhd on data bus,

rd cscd {) POD PROGRAM returns the 24 bit!
interrupt cascade address that!
was found on the address bus !
during the last interrupt
acknowledge cycle.

recent interrupt vector and
rearms the pod to respond to

!
!
i
!
[
I
!
!
!
!
1
!
t
!
1
1
]
I
1
1
'
1
1
1 the next interrupt.
!

1
1
1
rd rearm 4] POD PROGRAM returns the most !
r
f
!
!

1
! Main Declarations 1

declare
string q ! used to get Input from keyboard
global string rev ! Reverse Video escape sequence
global string norm ! Normal Vlideo escape sequence
end declare

function sync buffer(address, data)
declare numeric address
declare numeric data

! synchronize FIFO buffer in DUART. #Write and then read until correct data
! is returned or count has expired.

write addr address, data data ! Transmit Data 31 on port A
walt time $200
cnt =0 \x =20
loop until x = data or cnt > 3
% = read addr address
cnt = ent + 1
end loop
end function

4-161

Serlal /O

4-162

1 FUNCTIONAL TEST of the SERIAL I/O Functlonal Block,
IR RN R RN e R R N RN NN R RN NN R N NN R R R R R AR AR R N

| Set interrupt acknowledge cycles on and use the 80286
1 pod specific programs rd_ream(), frc int{} & rd_cscd(}.

podsetup 'report intr* "off*

podsetup 'intr_ack on' ! Enable Interrupt Ack. cycles
option = getspace space "i/o", size "byte"

setspace {option)

execute check_leop(}

execute rd rearm() ! Clear inte.rupts

! Main part of Tesc, Verlfy DUART port A.

sync_buffer({ 52006, 561) | Synchronize FIFO in DUART for port A

write addr $2006, data $55 ! Transmit Data 31 on port A

walt time $200 .

if ({read addr $2002) and $F} <> $D then fault 'RS232 Port A falled' \ return
1f (read addr $2006) <> $55 then fault 'RS232 Port A falled' \ return

write addr 52006, data 553 ! Transmit Data 31 on port A

wait time $200

1f {{read addr $2002) and 5F) <> 50 then fault *RS5232 Port A failed' \ return
if (read addr $2006} <> $55 then fault *'R$232 Port A falled' \ return

! Verify DUART port B and interrupts.

sync_buffer($2016, $61) ! Synchronize FIFQ in DUART for port B
write addr S5201E, data $FF | set cutput port low
write addr $2016, data $31 ! Transmit Data 31 on port B

if frc int{} <> $22 then fault 'Interrupt falled' \ return

if rd_cscd() <> $2016 then fault 'Interrupt failed' \ return

1f (readstatus{} and 8) <> B then fault ‘Interrupt failed' \ return

if (read addr $2016} <> $31 then fault 'RS232 Port B failed' \ return

if fre int () <> $27 then fault 'Interrupt falled' \ return

write addr $201C, data $FF

i1f {{read addr $201A) and 2} <> 0 then fault 'RS$232 Port B falled' \ return

end program

—

Serial /O

Stimulus Programs and Responses 4.6.6.

Figure 4-62 is the stimulus program planning diagram for the
Serial 1/O functional block. The Serial I/O stimulus programs
require the test operator to close the loopback switches which
loop the transmit lines back to the receive lines and loop the Port
B RTS output back to the Port B CTS input.

The 15232 _data stimulus program outputs data from the DUART
onto the data bus. The rs232_Ivi stimulus program sends a
character out the transmit line and then monitors RS§232-level
signals using the probe with the threshold levels set to "rs232",
The #/_Ivl stimulus program is the same as 5232 /vl except that
signals are measured using a level threshold of "tl".

All the stimulus programs execute rs232 init before any
measurements are made on the Serial I/O circuitry.

4-163

Serial 1/O

Stimulus Program Planning

PROGRAM: RS232.0ATA

PROGRAM: TTL.LVL

EXECUTES RS232_INIT AND READS DATA FROM

EXECUTES RS232..INIT AND EXERCISES RS-232

DUART REGISTERS CIRCUITRY AT TTL LEVELS .
MEASUREMENT AT: MEASUREMENT AT:
U11-28,18,27,19,26,20,25,21 U11-33,14,24,13,15,17

u2-129

U13-68

PROGRAM: RS232_LVL

EXECUTES R5232_INIT AND EXERCISES RS-232
CIRCUITRY AT RS-232 LEVELS

MEASUREMENT AT:

U12-7,141,246
J2-3.5
R22-2
C15-2
Ci17-2

INITIALIZATION PROGRAM: RS232_INIT

INITIALIZES THE DUART

MEASUREMENT AT:

(NCNE)

4-164

-

Serial I/O

InTA

Lisw
READY a31 Jage |ASCLI KEYBOARD
CIRCULT AR A CORNECTOR
Ls14 L34
"ﬁ!mv 8
ui3 wa
80285 I
HICAOPROCESSOR
4 €7 8
l SWG-4 T 4IpF T 47F
13
- <
BUS
BUFFER 10y
DUART 5 “CIB
2681 R21 pA20 JA22 2auF
e Itos a7 ooes 3 {30k S
Jaoz 2]at raoaf22
S T T S— N - P bexeae =
[120 Do 1Z] a0} e |7 Rs232-C
2 -
. v 1000 28] 00 MME 12 4 Lis PORT 1
1003 18] g, I
It T — 1 O I sl .~ a4
e s 1003 77 ieln, e [H0 WG bt
Il T I 1 PR i R sorsl sl g e
1005 20] ps 1pa |43 8C —3] E]
el T 1 | P v] 2
1007 21l 1pE [41_HC . 22F [2] 100
TRATTE 8 Iy opp |22 1 R2 4018 Uiz SN4-4
H_NC =10v -
P ot 5 |- bt 1 il :;w{ea;r €17 |4 o33 1]
T/OEY a9 lee 30K
TE gea (3T M 22uF
cPs. I
RESET 38 becer gpp |22, MC
L op7 [7 sHa-5
j— +——S o2 |
2 THT -
ADDRESS Uit prace
DECODE 8y 4
47K
e i " TIRER
3.8684 MHZ T7OIR 1
T ca ca '
CLOCK AND RESE 10pF INTERRUPT

CIRCUIT

THTRGY

! |

Figure 4-62: Serial /O Stimulus Program Planning

4-165

Setrial /O

program rs232 data

STIMULUS PROGRAM for Ull data lines as outputs.

stimulus programs and response files are used by GFI to backtrace
from a failing node., .The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs In the UUT that are stimulated by the stimulus program.

This stimulus program is one of the programs which creates activity
in the kernel area of the UUT, These programs create activity with
or without the ready clreuit werking properly. Because of this, all
the stimulus programs in the kernel area must dlsable the READY input
to the pod, then perform the stimulus, then re-enable the READY input
to the pod. The 80286 microprocessor has a separate bus controller;
for this reason, disabling ready and performing stimulus can get the
bus controller out of synchronization with the pod. Twe fault

handlers trap pod timeout conditions that indicate the bus controller !

is out of synchronizaticon., The recover () program is executed to
resynchronize the bus contreller and the pod.

TEST PROGRAMS CALLED:
rs232_init () Initialize the RS232 circuit.

recover (}

GRAPHICS PROGRAMS CALLED:
{none}

Glcbal Variables Modified:
recover_times
devname

declare global numeric recover times

The 80286 microprocesscr has a!l
bus contreller that is totally!
separate from the pod. 1In !
some cases the ped can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller,

Reset to Zero
Measurement device

{continued on the next page)

Figure 4-63: Stimulus Program (rs232_data)

4-166

Serial I/O

handle pod_timeout_enabled line
recover {}

end handle

hzndle pod timecut recovered
recover {)

end handle

recover_times = 0
! Let GFI determine the measurement device,

if (gfi contrel} = "yes" then
devname = gfi device

else
devname = "/modi"

end if

print "Stimulus Program RS232 DATA"

! Set addressing mecde and setup measurement device.

reset device devname

execute rs232_init ()

setspace space (getspace space "i/o", slze "byte"}
sync device devname, mode "pod”

sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname ! Start response capture.
read addr 3$200A
read addr $201A
read addr $2012
read addr $201A
read addr $2000
readout device devname ! End response capture.

end program

Figure 4-63: Stimulus Program (rs232_data) - continued

4-167

Serial IO

STIMULUS PROGRAM NAME: RSZ32_DRTA
DESCRIPTION:
Response
Node Learned

Signal Src With

ull-18 PROBE
Ull-18 1/0 MGODULE
u11-19 PROBE
U11-19 I/0 MCDULE
U11-20 PROBE
Ull-20 1/C MODULE
Ul1-21 PROBE
ull-21 1/C MODULE
U11~-25 PROBE
U11-25 1/0 MODULE
Ull-26 PROBE
U11-26 1/0 MODULE
v11-27 PROBE
u11-27 I/0 MODULE
U11-28 PROBE
Uil-28 1/0 MODULE

Figure 4-64: Response File {rs232_data)

4-168

Async Clk Ccunter

SIG IVL IVL

000B
000B
O00E
000E
000A
000A
000A
000A
Q00A
000A
001A
001A
000F
000F
0018
001B

L o Sy ety SR
CODO0OO0O0o0OC000DCOOD0OO

Data

Mode

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

SIZE:

Counter Range

318 BYTES

Pricrity
Pin

J—

Serial I/0

program rs232 1vl

PIETIRIRETLELE
STIMULUS PROGRAM for DUART serial circults at TTL levels.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the known-good responses for

the ocutputs in the UUT that are stimulated by the stimulus program.

[
! f
! !
! !
! !
! !
! !
! !
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with 1
! or without the ready clrcuit working properly. Because of this, all |
! the stimulus programs In the kernel area must disable the READY ipput |
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The B0286 microprocessor has a separate bus controller; |
! for thils reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Twe fault !
! handlers trap pod timeout conditions that indicate the bus controller !
1 is out of synchronization. The recover{} program 1s executed to 1
! resynchronlze the bus contreller and the pod. !
1 I
! !
! !
! !
! !
! !
! 1
! !
! !
! !
! !
! !
I I
1

! TEST PROGRAMS CALLED;
5232 Init () Initialize the RS232 cirenit.

check_loop (} Check that loop-back switches

are closed. Prompt if the
switches are not closed.

! GRAPHICS PROGRAMS CALLED:
{ncne)

! Local Variables Modified:
String te accept keypad input.

! Let GFI determine the measurement device.

if {(gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "stimulus Program RS232 IVL*

{continued on the next page)

Figure 4-65: Stimulus Program (rs232_ivi)

4-169

Serial I/O

! Set addressing mode and setup measvrement device,

reset device devname
execute rs232 lnit{)

setspace space (getspace space "i/o", size "byte}
sync device "/proke", mede "freerun"
threshold device */probke", level “rs232¢

execute check_loop()
! Present stimulus to UUT,

arm device devname
write addr 52006, data
write addr %2006, data
write addr $2016, data
write addr $2016, data
readout device devname

end program

555

555
5D

! check if the iloop back switches are set.

Start response capture.
4 Txd port A

! Txd port A

13 Txd port B

! Txd port B

End response capture.

Figure 4-65: Stimulys Program (rs232_Ivi) - continued

4-170

Eal

Serial IO

STIMULUS PRCGRAM NAME: R$232 LVL
DESCRIPTION:

Node
Signal Src

ui2-7
Ul2-14
J2-3
J2-5
R22-2
u12-1
U12-2
C15-2
Ulz-4
Cc17-2
U12-6

SIZE:
Response Data

Learned Async Clk Counter

With SIG IVL IVL Mode Counter Range
PROBE 10 TRANS 8
PROBE 1 TRANS O
PROBE 1¢ TRANS B8
PROBE 1 TRANS ©
DPROBE 1 TRANS 0
PROBE 1 TRANS
PROBE 1 TRANS
PROBE 1% TRANS
PROBE X TRANS
PROBE 1x0 TRANS
PROBE X TRANS

Figure 4-66: Response File (rs232_Ivl)

249 BYTES

Priority

4-171

Serial 1/0 -

program ttl_lvl

{ STIMULUS PROGRAM for DUART serial circuits at TTL levels. !
{

{ stimulus programs and response files are used by GFI to back-trace 1
! from a failing nede. The stimulus program must create repeatable [FUT !
! activity and the response flle contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
!' TEST PROGRAMS CALLED: 1
! rs232 inlt) Inltialize the R5232 circuit. !
1 I
1 check_loop ({} Check that loop-back switches !
1 are closed. Prompt if the

1 switches are not cleosed.

1 1
1 GRAPHICS PROGRAMS CALLED: 1
§ (none} '
t i
I Local Variables Modified: !
1 q string to accept keypad input.!
! devname Measurement device
!!!!!!!!!!!!!E!!!!!!!!1!!!1!!El!!!!!!1!!!!!!!!!!!!!!!!!!'!!!!!!!I!!!!!!!!
IR N N N e S A A N ARy
1 Main Declarations 1

declare string q
! Let GFI determine the measurement device.
if (gfi contrel} = "yes" then
devname = gfi device
alse
devname = "/modl"

end if
print "stimulus Program TTL LVL"

(continued on the next page)

Figure 4-67: Stimulus Program (#{_ivl)’

4-172

AT

e

Serial /0

! Set addressing mode and setup measurement device.

reset device devname

execute rs232 init ()
setspace space (getspace space "i/o", size "byte")

sync device “/probe", mode “pod®
sync device “/pod", mode “"data"

threshold device "/probe”, level "ttl®

execute check_loop(}

! Present stimulus to UUT.

arm device devname

write
write
write
write
write
write

addr
addr
addr
addr
addr
addr

52006,
$2006,
$2016,
$2016,
5201¢,
$201E,

data $55
data 5D
data $55
data SD
data $FF
data S$FF

readout devlce devname

end program

! Check if loop back switches are closed,

| Start response capture,
! Txd port A

! Txd port A

! Txd port B

! Txd port B

1

! Pulse timer interrupt.
| End response capture,

Figure 4-67: Stimulus Program (ti/_ivl) - continued

4-173

Serial I/0

STIMULUS PROGRAM NAME: TTL LVL

DESCRIPTION: SIZE: 368 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG LVL IVL Mode Counter Range Pin
U11-13 PROBE 10 TRANS 8
Ull-14 PROBE 10 TRANS 1
U11-33 PROBE 10 TRANS 8
U11-33 I/0 MODULE 10 TRANS 8
U11-15 PROBE 10 TRANS 1
U11-15 I/0 MODULE 10 TRANS 1
U11-17 PROBE 10 TRANS 1
Ul1l-24 PROBE 10 TRANS 0O
Ull-24 1/0 MODULE 10 TRANS O
v1z-12 PROBE 10 TRANS 8
Uiz-9 PROBE 10 TRANS 1
U13~6 PROBE 10 TRANS 8
Ui3-6 1/¢ MODULE 10 TRANS 8
U13-8 I/0 MCDULE i0 TRANS 8

Figure 4-68: Response File (H{_Iv])

4-174

e

Serial /O

program rs232 init

! TEST PROGRAMS CALLED:

{none}

{none}

1

1

t

| GRAPHICS PROGRAMS CATIED:
1

H

1

setspace space (getspace space "i/o", size "byte")

write addr
write addr
write addr
write addr
write addr
write addr
write addr
write addr
write addr
wrlte addr
weite addr
write addr
write addr
write addr
write addr
write addr
write addr

read addr $2002
read addr $2000

end program

$2004, data 515
$2004, data $25
$2004, data %35
$2004, data $45
52004, data $55
$2014, data 515
$2014, data $25
$2014, data $35
$2014, data $45
$2014, data 355
$2000, data 313
$2000, data 7

52010, data $13
52010, data 7

$2002, data 566
52012, data $BB
$200A, data $20

! Cmnd Reg A: reset Rxd
! Cmnd Reg A: reset Txd
! Cmnd Reg A: reset Errors
! Cmnd Reg B: reset Rxd
! Cmnd Reg B: reset Txd
! Cmnd Reg A: reset Rxd
Cmnd Reg A: reset Txd
! Cmnd Reg A; reset Errors
| Cmnd Reg B: reset Rxd
H Reg B: reset Txd
! Mode register 1A
! Mode register 2Aa
! Mode register 1B
Mode register 28
! Clock select register A
! Clock select register B
! Interrupts for port B
! Read Status Reg A
! Read Command Reg A

______,__é____,____

Figure 4-69: Initialization Program (rs232_init)

4-175

Serial 1/O

Summary of Complete Solution for
Serial I/0 4.6.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Serial I/O functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the locanon in
this manual for each file.

UUT DIRECTORY
{Complete File Set for Serial I/O)
Programs (PROGRAM):
TEST _RS232 Functional Test Section 4.6.5
RS5232_DATA Stimulus Program Figure 4-63
RS232_LVL Stimulus Program Figure 4-65
TTL_LVL Stimulus Program Figure 4-67
FREQUENCY Stimulus Program Figure 4-117
LEVELS Stimulus Program Figure 4-92
RS232_INIT Initialization Program Figure 4-69
Stimulus Program Responses (RESPONSE):
RS232_DATA Figure 4-64
RS232 LVL Figure 4-66
TTL_LVL Figure 4-68
FREQUENCY Figure 4-118
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-176

/"“-.

T

Video Output

VIDEO OUTPUT FUNCTIONAL BLOCK 4.7.

Introduction to Video Output Circuits 474,

Video output circuits are part of larger video display circuits. In
general, video display circuits can be divided into two basic
classes: video display controllers and intelligent command-
oriented display systems, which are a superset of video display
controllers. In this manual, we will limit our discussion to video
display controllers.

Figure 4-70 is a block diagram of a typical, complete video
display controller, of which video output is one functional
block. On the Demo/Trainer UUT, address decoding is
partitioned as a separate functional block and is described later in
Sections 4.11. Often, much of the video control circuitry is
performed by a VDC (video display controller) chip. On the
Demo/Trainer UUT, most of the video output block is
implemented with a single LSI chip.

The video output block typically performs all or some of the
following functions:

* Converts video RAM character or dot graphics signals
(typically on a bus) to higher-speed (typically serial) pixel
outputs that drive the monitor. This is usually done with
shift registers.

* Modifies the meaning of video RAM color-data outputs
according to a color look-up table or palette RAM.

* Converts the pixel output to analog or digital signals
compatible with the monitor. :

Considerations for Testing and
Troubleshooting 4.7.2.

The Video Output functional block simply processes information

presented to it by the Video Control and Video RAM functional
blocks. All three video blocks can be considered good if the

4-177

Video Output

From
Microprocessor

4-178

—

Address

Decoding
Circuit

h

Display
Memory

Video Processing

and Memory
Access

X

Video Control

and Timing

and Output
Shift Register

h

—
To Monitor
—

A

" Figure 4-70: Typical Video Controller Circuit

ST

Video Qutput

final outputs of the Video Output functional block are good.
Because of this, the Video Qutput functional block is tested first.

While a generalized approach to testing Video Control functional
blocks is feasible, testing Video Output and Video RAM

functional blocks is strongly dependent on the design of the
UUT.

The general approach for testing video circuits is to initialize
video RAM and any other RAM sections so that some regular
pattern will occur each frame. When this is done for each mode,

there should be a way to capture stable signatures on the
outputs.

To test video output:
1. Initialize the video control circuit.

2. Initialize the video RAM with blinking disabled.

For horizontal sync and vertical sync:

3. Probe the horizontal sync and vertical sync outputs.

4. Compare all frequencies to those from a known-good
UUT.

For video outputs:

3. Connect the clock module's external CLOCK,
START, and STOP lines.

4. Compare signatures of TTL-level video outputs to
those from a known-good UUT.

5. Youcan check the level history of any non-TTL-level
video outputs to verify that they are toggling.

4-179

Video Output

Connecting the Start and Stop lines to the vertical sync line will
usually work. The Clock line should be connected to the high-
speed clock that drives the video output shift registers.

Video outputs are sometimes high-speed analog signals.
Fortunately, any digital-to-analog tonversion is usually done at
the last step before the monitor. By measuring the digital signals
that drive digital-to-analog converters, most of the circuit can be
tested with the 9100A/9105A.

Furthermore, many of the monitors for personal computers
accept TTL-level signals. Video cards that put out such TTL-
level signals can be checked by the 9100A/9105A at these TTL-
level video outputs.

Choose your measurement device to suit the data rate of the
signals you are measuring, If the Video Output signals exceed
the maximum data rate of the I/O modules (10 MHz), the probe
should be used.

Testing should be started in the mode that tests as much of the
video display circuitry as possible. In a color graphics circuit,
this might be the highest resolution mode with the most colors.
Simple tests in other modes can then be used to cover circuitry
not tested with the more extensive test.

When selecting the Start and Stop signals for signature analysis,
connect to the slowest repetitive signal, relative to the circuitry
being tested. This will usually be the vertical sync signal.

To test blinking cursors, it may be easiest simply to probe an
internal line to make sure it is blinking rather than run a test
program. Other similar modes may also be faster to test with the
probe.

Video Output Circuit Example 4.7.3.
The Video Output functional block, shown in Figure 4-71,

consists of the 2675 attributes controller chip (U78) and
associated circuitry. The 2675 contains a programmable dot

4-180

T

Video Output

clock divider to generate a character clock, a high-speed shift
register to convert parallel pixel data into a serial stream, latches
and logic to apply visual attributes (e.g. colors) to the resulting
display, and logic to display a cursor on the monitor,

Associated circuitry includes latches U87 and U76, which clock
in display information provided by the character PROM, and Q1
and Q2, which boost the video signal before it is mixed with the
horizontal and vertical sync signals at the monitor to be
connected at J3.

The circuitry from the Video Control functional block up to the
2675 attributes controller chip (U78) clocks video data in
character format. This means that the code for a character and
the attributes for that character are clocked toward the 2675 chip.
The attributes controller converts the parallel character
information to pixel data.

The circuitry after U78 should be initialized without blinking
characters in the video screen, otherwise the pixel stream will
change when the characters blink. However, the circuitry
between the video control and U78 may contain blinking
characters, since the blinking characters are determined by an
attribute bit which is stable. :

Keystroke Functional Test 4.7.4.

Before testing any part of the video display circuitry, the video
controller and video RAM must be initialized. The TL/1
programs video_init, video_fill, and video fil2 are used for
initialization of the Demo/Trainer UUT video circuitry. Figure
4-79 shows the video_init program, which contains a sequence
of write commands needed to initialize the Video Control
functional block. Figures 4-80 and 4-81 show the video_fill
and video_fil2 programs, which write blocks of data to video
RAM

4-181

Video Output

4-182

. Use the EXEC key with the following commands to initialize

the video circuit and to fill the video RAM with a test pattern.

EXECUTE UUT DEMO PROGRAM VIDEQ INIT
EXECUTE UUT DEMQ PROGRAM VIDEO FIL1

. Connect the external control lines of the clock module as

follows:

Clock to 16MHZ (U25-9)
Start to VSYNC (U72-18)
Stop to VSYNC (U72-18)
Enable to BLANK (U72-17)

. Use the SYNC and PROBE keys with the following

commands to measure the node response for the video
output signals (TTV1, TTLV2, and VIDEQ). The pins to be
probed and the correct responses are shown in the response
table of Figure 4-71.

SYNC PROBE TQ EXT MOD ENABLE LOW CLOCK | ...
. START | stop T :

ARM PROBE FOR CAPTURE USING SYNC

SHOW PROBE CAPTURED RESPONSES <see ...
. response table>

. Use the PROBE and SOFT KEYS keys with the following

command to measure frequency of the video synchronization
signals. The results for each sync signal (HSYNC and
YSYNC) are shown in the response table of Figure 4-71.

FREQ AT PROBE

T

P

Video Output

. : A;iJI\
Ti UM e Py

coloon b boine vesulitne

(This page is intentionally blank.) . .-

R .
TSR T A E
T VE

IEERE R

4-183

Video Qutput

Keystroke Functional Test

CONNECTION TABLE
MEASUREMENT CONTROL MEASUREMENT
{NONE} CLOCK MODULE PROBE
CLOCK U25-9 urs
START 72418 J3
STOP U72-18
ENABLE U727
RESPONSE TABLE
SIGNAL PART PIN MEASUREMENT
HSYNG -8 16.7 TO 16.8 KHz
VSYNG -9 58 TO 6% Hz
VIDEO J3-7 1X0 (ASYNC LEVEL)
TTLVY U78-28 BO13 {SIG)
TTLVZ -29 E4A7 (SIG)
80286 aus
MICAOPROCESSOR BUFFER
REAODY -—,
< READY VIDEO
CIACUTT RAM

4-184

VRAHRDY

P

Video Output

HSYNC

¥SYNC

L5175 SWE-7
paoooa & [og
DADDOS 5 |y
DADBOB 12 |3y
0ABBO7 13 3
+5v 1 Eon
L504 A0
BLANK 3 4 9 X
u7s 2
LGz o3
DBQO M o6l 1B 08
[| oeo1 5 us o5l 1705
DROZ 4 |ug ol 18 Ca
[{oaos a7 0315 _ D03 5y
nAoA 5 |ng b2l 13 0z
|| pacs 4 lag 0a|18_ 01 AS1 (RG2 (RG3 JABA JABS
0806 1 la10 oglil 00 f150 {158 lisa {158 {158
[| oaer 23014
oAY4 2 fns2
0815 26 443 J_ ca1
DiuF
20 1 8 7
- Y COLOR/MONGCHADHE
ADDY 1 ;
DADD10 ATTAIBUTES CONTROLLER
2675
1,508 A LI
a 13k vep] 3
Lsa7a L5374 &
07 18fp; grl19 8Ly a7]48 39 bo o35
OB 17 he e 16 ? e Pres L 2 Ty PRED
B5 14 5 osi 18 4 he 15 RELANK] 7] 45V
04 335, galiZ EY
03 8 [y o B 03 noTH 10
02 7 ha g2 7 oz ooTH 31
ga ; 1 oy 2 bt CHODE] 23
a0 ool 2 0 ADOTH
11 11 RESETIAS
1 foF 1 e
! = ver 1
SWEB-1 25 LaHICT n/g 38 +5v
LSa73 45V 1 i6 ABLANK
. By a7l L 4 anouBLE
" [oBoa s asl18 T 8 Liavio
B G alos gsl1s 421 Lpgy
I [3l gal1? g_ﬂ_‘.\psa P 26 NC
[Joe:2 2 gal® P 8 feuAsoR gpyf 27 HC
D813 2 as|® 12l ank TrLve[28 —
4 o3 gilB KNG 33 ITEIK TTLv 88
5 o goleNE 32 oLk
iy uzs
i o 1GHHZ
813 TTLVA
TiLva
CunsoA
ALANK
TCLK

Figure 4-71: Video Quiput Functional Test

4-185

Video Output

Programmed Functional Test 4.7.5.

4-186

The test video program is the programmed functional test for the
Video Output functional block. This program uses the gfi test
command and the probe to measure the output of the video
circuit.

If the video outputs fail, the program executes programmed
functional tests for the Video Control functional block and the
Video RAM functional block. If either of these functional tests
fails, GFI will take control and begin backtracing. If neither test
fails, the problem is in the Video Output functional block and the
test_video program passes control to GFI to start backtracing
from the video outputs that failed.

program test_video

RSN R R AR R R R A R N RN R AR AN RN N NN

! FUNCTIONAL TEST of the VIDEO functional block !
1 1
! Thls program tests the VIDEQO functional block of the Demo/Trainer, 1
! The video test uses the gfl test command to run stimulus pregrams and !
! to check the cutputs of the Video clircuit against the stlmulus program!
! response files. The gfl test command returns a passes status if all !
! the measured results from running the stimulus programs match the f
| response flles. OtQprwise the gfi test command retuxns a fails I
! status. !

! Setup and initialization.

connect clear "yes'"
pocdsetup 'enable ~ready' "on"
print "\nl\nl"

! Main part of Test.

if gfl test "J3-8" falls then fault video scan \ return
if gfi test "J3-9" falls then fault video scan \ return

if gfi test "U78-11" fails then fault video scan \ return
if gfi test "U78-28" fails then fault video output \ return
1f gfl test "U78-29" falls then fault video output \ return
if gfi test "J3-7" falls then fault video output \ return

end program

P

Video Output

Stimulus Programs and Responses 4.7.6.

Figure 4-72 is the stiulus program planning diagram for the
Video Output functional block. The video freq stimulus
program initializes the video registers and then measures
frequency. The video_scan stimulus program initializes video
RAM with blinking characters by executing video fill. The
video_out stimulus program initializes video RAM without any
blinking characters by executing video fil2, Not having
blinking characters results in stable signatures in the circuitry
between U78 and the video output connector.

All the stimulus programs execute video_init before any
measurements are made on the video circuitry,

4-187

Video Output

Stimulus Program Planning

PROGRAM: VIDEO_FREQ

INITIALIZATION PROGRAM: VIDEO_FIL1

EXECUTES VIDEOL.INIT AND MEASURES
FREQUENCY

INITHALSZES VIDEQ RAM WITH BLINKING
CHARACTERS

MEASUREMENT AT

u78-33
uas-3 11
us2-4

MEASUREMENT AT:

{NONE)

INITIALIZATION PROGRAM: VIDEC_INIT

PROGRAM: VIDEQ_SCAN

EXECUTES VIDEQ_INIT, VIDEO_FIL1, AND
MEASURES ALL CIRCUITRY WHERE DATA IS
GLOCKED THROUGH BY CHARACTERS

MEASUREMENT AT:

U75-23,7.6,10,11,1514
UI7-11,12,1315,16,17,1819
U87-2,5,69,12,15,16,19
U76-2,6,6.9,12,15,16,19
U63-6,11
U86-6,9,12,15,16,18

CLK

iNITIALIZES ViDEOQ REGISTERS TO STANDARD
OPERATING MODE

MEASUREMENT AT:

(NONE)

INITIALIZATION PROGRAM: VIDEQ.FIL.2

INITIALIZES VIDEQ RAM WITHCQUT BLINKING
CHARACTERS

MEASUREMENT AT:

{NONE)

CLOCK AND RESET

1BMHZ

80286 BUS
MICROPAGCESSORA BUFFERA
o _
AEADY VIDED
CIACUIT RAM
. VIDED
VRAHROY CONTROL

4-188

Video Output

LS379 SW5-7
DADDO4 4 [y gol2 7
DADDDS 8 o, 3 HC
DAODOG 12 [ny g4|7
DADDO7 13 B M
+8V
LS04 vpa| 1 _+5BY
BLANK 3 a3 o Er
uB2 2 07438 D7
| oBoo B laa os] 18 DB
[] Déos 5 lio onl 37 o5
DROZ 4 |6 04 04
[DBO3 EN 03 D3 +5v
[{ naoe 25 |, p o2 0z]
|} osos 4 [ho 01 01 AS1 }AGZ JAB3 (AG4 JRED
DBOB Llase 0o (1] 158 {156 {1858 {158 {1s@
[| oso7? 3 a1
DB14
[| In12
| | oais 26 la13 c21
e l.muF
& uzz COLOR/MONOEHADME
CADDS1 ATTRIBUTES CONTROLLER
CADODID
2675
—I 1181 INK
13k, veal 1
L5373 15374
07 38, g7lu8 - 39 np ¢35
DE 37 lhg pel 28 7 g 2 1oy cof 24
jOs i4l5 gsld alhs 38 na RBLaNKL 7] +5V
D4 13]5, el d2 E1TH 3 _lna
D3 8 37 i0
bl o 3 4 DoTH
gf ': 2 a2 T e o5 DOTH 3;
1 1 o CHODE]
00 ::l T ?1 0 7 AOOTH ’:‘;
os RESET|
1 Jog 1 fE aun
vaz uze ABL INK
— 37 koo
SHE-1 Z: AHILT w30 5V
L5373 +5V 3§ 16 JABLANK
| |aeea o EEL 14 [anouat €
[fosos 37 g 1 ETY g
I G 14 e as| ——JAPG1
DB 13hs @4 g_ae xrE2 gpe 26 NG
o8 ep o BlounsoR gpil27 NG
0B 7 b2 ag 12 lai ANk TTLVY
) NG 33 FETR TTLV:
0; @3 N 3z
3_loo o2 NG oCLK
i1 uze
5
1_Jog JEH
ues TTLVL
~ TILVE
GUASCR
BLARK
TCLK.
HEYNC
VYSYNC

Figure 4-72: Video Qutput Stimulus Program Planning

4-189

Video Output

program video freq .

| STIMULUS PROGRAM to measure frequency in video clreuit. 3
1 r
! Stimulus programs and respense files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. H
1 1]
! TEST PROGRAMS CALLED: 4
! video_init {} Initialize video

1]
! GRAPHICS PROGRAMS CALLED: t
! (none) 1
1 1
! Local Varlables Modified: t
! devname Measurement device !
RN A R R e N R N S N NN NSRS NN

handle pod timeout_enabled_line
recover (}

end handle

handle pod timeout_recovered
recover {}

end handle

recover times = 0
! Let GFI cdetermine the measurement device
if (gfl contrel} = "yes" then
devname = gfl device
else
devname = “/probe"
end if
print "\1B[2J"
print "Stimulus Program VIDEQ FREQ"
| Initialize and Setup desired measurement mode
reset device devname
execute video_lnit{)
counter device devname, mode "freg"

1 No stimulus is applied; respense 1s frequency

arm device devname ! Btart response capture
readout device devname ! End respense capture

end program

Figure 4-73: Stimulus Program (video_freq)

4-190

—

Vi

STIMULUS PROGRAM NAME: VIDEC FREQ
DESCRIPTION:

Node
Signal Sre

072-17
ur2-17

Learned
With

PROBE
1/0 MCDULE
PROBE
T/0 MODULE
PROBE
I/0 MODULE
PROBE
1/0 MCDULE
PROBE
PROBE
PROBE
I/0 MODULE
I/0 MODULE

Figure 4-74: Response File {video_freq)

Response Data

Ll el ol S el
COCOoOCOoOOCOoODOoOoOO

Async Clk Counter
IVL LVL Mode

FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ
FREQ

S5IZE:

Counter Range

14300-14500
14300-14500¢
59-61

59-61
16700-168G0
1670G-16800
1770000-178000G0
1770G00-1740000
16700-16800
59-61
1770000-1780000
1770000-1780000
14300-14500

345 BYTES

Priority
Pin

4-191

Video Output

program video_out

! STIMULUS PROGRAM measures character scan circultry frem 078 te output,!?
! !
! stimulus programs and response flles are used by GFI to backtrace !
{ from a failing node, The stimulus program must create repeatable UUT !
{ activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program, !
1 1
| TEST PROGRAMS CALLED:]
! video_init {) Initialize video ciruit, !
1 !
! video_fil2 () Initlalize data in video RAM !
! with no blinking characters 1
]]
! check_meas {device, start, stop, clock, enable) t
1 Checks to see if the measure- !
1 ment is complete using the

! TL/1 checkstatus command., 1If !
' the measurement times out then!
1 redisplay connect locations. !
1 1
! GRAPHICS PROGRAMS CALLED: 1
! {none} '
1 1
! Local Varlables Modified: !
! done returned from check_meas (}

! devname Measurement device
!!!!!!!!!!!!!!!!!l!!i!!!l!!!!!!"‘!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
L N S e N N N ARy
! Maln Declarations !
(AR e N S R N RN S NN R RN R AR N RS NS NN

! Hain part of STIMULUS PRCGRAM !
IIIII'IIIlI1I|l1I1I|r1Ir|ll|l|||||lIllflll|Itl1l'l'|||r!|Illlll1|l|rlll|l|l|

| Let GFI determine measurement device.

1f (gfi control} = 'yes" then
devname = gfi device

else
devname = "/probe"

end if

print *“\1B{2J"

print "Stimulus Program VIDEC OUT"

(continued on the next page)

Figure 4-75: Stimulus Program (video_out)

4-192

P

Vi

Video Output

! Tnitiallze and Prompt user te connect external lines

execute video init ()
execute video f112(}
connect device devname, start "USB-13", stop "UB8B-13", clock "U25-9", common "gnd"

! Setup desired measurement modes,

reset device devname

sync device devname, mode “ext"

enable device devname, mode "always"

edge device devname, start *-", stop “+", clogk "-"
old cal = getoffset device devname

setoffset device devname, offset (1000000 + 40)

! Present stimulus to UUT.
loop until done = 1
arm device devhame
dene = check_meas (devname, "U88-13", "U88-13%, "P25-91, many
readout device devname

end locp

setoffset device devname, offset old cal
end program

Figure 4-75: Stimulus Program (video_out) - continued

4-193

Video Output

STIMUILUS PROGRAM NAME: VIDEQ OUT

SIZE:

DESCRIPTION:

Node Learned
Signal Src Wich
U78-28 PROBE
078-29 PROBE
uga-¢ PROBE
Ugg-8 PROBE
R72-2 PROBE
g2-1 PROBE
¢l-1 PROBE
R71-2 PROBE

4-194

Response Data
Async Clk Counter
. SIG IVL LVL Mode

BO13 10 TRANS
E4A7 10 TRANS
10 TRANS
10 TRANS
1X0 TRANS
1X TRANS
1X0 TRANS
1X0 TRANS

Figure 4-76: Response File {(video_out)

Counter Range

4431
6359
4431
6359

200 BYTES

priority
Pin

i

Video Output

program video_scan

R N N R A N AN NN NN

I
STIMULUS PROGRAM to measure character scan clircultry from 072 to U78,

Stimulus programs and response files are used by GFI to back-trace
from a failing node, The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses foxr
the outputs in the UUT that are stimulated by the stimulus program.

TEST PROGRAMS CALLED:
video_init (} Inltialize video ciruit.

video_fill () Initialize data in video RAM

1
! !
! !
! !
1 I
! [
1 [
! !
1 !
! !
! |
! !
! 1
! check_meas (device, start, stop, clock, enable} !
! Checks to see if the measure- !
| ment 1s complete using the !
! TL/1 checkstatvs command. If !
! the measurement times ocut then!
]
1
1
b
t
t
t
I
I

redisplay connect locations. !

GRAPHICS PROGRAMS CALLED:
{none}

done returned from check meas ()

devname Measurement device
TII0IEI Rt tergidngs

!
I
!
I
Local Varlables Medified: !
!
1
1

rrrrrredianae

1
I Main Declara

e
tiens
[RSRN!

declare numeric done = O

R R AR N RS R R R R R R R R NN R R N RN N N R R N R R A N R R N RO R R R RO DR
! FAULT BANDLERS: !
R N e e N R RN AR R R AR R

handle pod_timeout_enabled_line

recover (}
end handle
handle pod timeout_recovered

recover ()
end handle
IR R S S NN R R RS R R RN N R NN SR NN RS NN
! Main part of STIMULUS PROGRAM !
R R R R NN E RN R R R R N R R A N R N A R NN R R RN U R R AR]

recover times = 0

(continued on the next page)

Figure 4-77: Stimulus Program (video_scan)

4-185

Video Output

| Let GFI determine measurement device.

if {gfl control} = “yes" then
devname = gfi device
measure_ref = gff ref

else
devname = "/modl"
measure ref = "U72"
end if

print "stimu]us Program VIDEC SCAN"

Initialize and Prompt user to connect external lines

execute videc init(}

execute video fill{}

connect device devname, start "U8B-13", step "“U88-13", enable "U78-12",
clock "U78-33", common "gnd"

Setup desired mesurement modes,

reset device devname

sync device devname, mode "ext"

enable device devnpame, mode "low"

edge device devname, start "-", stop "+", clock "-"

Present stimulus te the UUT.

The blink slgnal node (U72-23 to U78-11) has a slgnature of 0000 50% of the time
and the slgnature in BLINK SIG the rest of the time. If U72 or U78-11 is being
tested, make sure both a zero and the signature in BLINK SIG are measured

on the node. The signature that gfi will evaluate 1s the signature in the
variable BLINK 51G.

done = 0 \ done2 =0
ent = 0 \ plink = 0
loocp until done = 1 and dcene2 = 1 or cnt > 12
arm device devname
done = check_meas {devname, "U88-13%, "U88-13", “U78-33", "U7B-12%}
if done = 1 then if checkstatus (devname}) <> $F then done2z =1
readout device devname
if measure_ref = "U78-11" then
if {slg device devname, pin 11}=0 then blink =1
if (sig device devname, pin 11}=BLINK SIG and blink=1 then done2=1
else if measure ref = "U72" then
if (sig device "U72", pin 23)=0 then blink = 2
if (slg device "U72", pin 23)=BLINK S5IG and blink = 1 then done2 =1
else
done2 =1 ! Den't. loop if not U72 or U78-11
end 1f
ent = ent + 1
end loop

end program

Figure 4-77: Stimulus Program (video_scan) - continued

4-196

./rr_\

/"“\\

Video Output

STIMULUS PROGRAM NAME:

DESCRIPTION:

Nede
Signal Src

U74-9

U74-10
074-11
U74-13
U74-14
U74-15
U74-16
074-17
ugs-9

Ug5-10
Ug5-11
Ug5-13
UB5-14
U85-15
Ug5s-16
U85-17
U84-12
ug4-3

Ug4-7

uga-4

ug3-12
Ugi-9

ug3-7

Ugi-4

u73-12
U73-9

073-7

U72-34
U72-33
U72-32
072-31
U72-30
u72-29
u72-28
ur2-27
U72-26
U72-25
u72-24
u72~24
U72-23
U72-23
u72-7

u72-7

U75-2

VIDEQ_SCAN

Iearned Async Clk Counter

With 51G VL VL Mode
I/0 MODULE 4155 10 TRANS
1/0 MODULE 3F33 10 TRANS
I/0 MODULE AGSA 19 TRANS
I/0 MODULE 9024 10 TRANS
I/0 MODULE DE6D 10 TRANS
I/0 MODULE D6GFA 10 TRANS
I/0 MODULE 7AC3 10 TRANS
1/0 MODULE 0477 190 TRANS
I/0 MODULE AB14 10 TRANS
I/0 MODULE (26B 10 TRANS
1/0 MODULE D909 10 TRANS
I/0 MODULE SFAR 10 TRANS
I/0 MODULE 5925 10 TRANS
I/0 MODULE 610D 10 TRANS
1/0 MODULE BSAB 10 TRANS
I/ MODULE ADD3 10 TRANS
I/0 MODULE 415% 10 TRANS
I/0 MODULE 3F33 10 TRANS
I/0 MODULE AB5A 10 TRANS
I/0 MODULE 9024 10 TRANS
1/0 MODULE DEED 10 TRANS
I/0 MODULE D&FA 10 TRANS
I/0 MODULE 7AC3 10 TRANS
I/C MODULE 0477 10 TRANS
I1/0 MODULE E941 10 TRANS
I/0 MODULE #£888 10 TRANS
I/0 MODULE *40B0 10 TRANS
I/0 MODULE 4155 10 TRANS
1/0 MODULE 3F33 190 TRANS
L/0 MODULE A&5A 1 ¢ TRANS
I/0 MODULE 9024 10 TRANS
I/0 MODULE DE6D 10 TRANS
I/0 MODULE D&FA 19 TRANS
I/0 MODULE 7AC3 10 TRANS
I/0 MODULE 0477 10 TRANS
I/0 MODULE FE941 10 TRANS
I/0 MODULE 8BBS 10 TRANS
PROBE 60B0 10 TRANS
T/0 MODULE 60BO 10 TRANS
PROBE D869 10 TRANS
1/0 MODULE D869 10 TRANS
PROBE 0000 Q TRANS
I/0 MODULE 0000 o] TRANS
I/0 MODULE ACAE 10 TRANS

Figure 4-78: Response File (video_scan)

(continued on the next page)

Response Data =—————m==c—r——a o

Counter Range

1,710 BYTES

Priority
Pin

4-197

Video Output

4-198

I/0
/0
/0
/0
/0
/¢
1/¢
1/0
1/0
1/0
I/0
/0
I/0
I/0
I/0
I/0
1/0
1/0
1/0
1/0
/0
/0
1/0

MODULE
MODULE
MODULE
MCDULE
MODULE
MODULE
MODULE
MOCULE
MODULE
MODULE
MODULE
HODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MCDULE
MCDULE
MODULE
MODULE

PRCBE

1/0

MODULE

PROBE

/o

MODULE

PROBE

/0

MODULE

PROBE

I/0

MCDULE

PROBE

/e

MODULE

PROBE

1/0

MODULE

PROBE

I/0
I/0

MCDULE
MODULE

PROBE

I/0

MODULE

PROBE

/0

MODULE

PROBE

1/0

MODULE

PROBE

I/0

MODULE

PRUBE

I/0

MCDULE

PROBE

/0

MODULE

PROBE

i/0

MODULE

PROBE

/0

Figure 4-78: Response File (video_scan} - continued

MODULE

6FBL
9817
5888
762E
B5D1
2C30
EFCF
7B80
8FE6
ADD1
EB37
FFET
B708
55C3
200D
B8O
BFE®
ADD1
EB37
FFE7
B708
55C3
BOOD
1ADB
1ADB
444F
444F
D65A
D65A
4366
4366
49EA
49EA
4DbC
4DDC
5Bl8
5B18
3EF2
0csa
0C5B
66D3
66D3
610D
610D
5925
5925
SFAA
SFEAR
D309
D909
C2€B
C26B
Ag14
AB14

EEEREMBHMEEE S S R RS R R R S R S e e e e e e e e R e e e e e e S e

QOOOOOODDOQOOOOOOOODDOGOOQOOOODODOOQDODOOOOOODODDDDOOO

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS

T

~ Video Output

program video init

INTTIALIZATION PROGREM for the 2674 Advanced Video Display Contraller,!
The program executes two Master Reset commands followed by the init- !
lalizatlon of 15 contiguous Initlalization Registers. Next & regis-
ers are initialized which determine the screen memory mapping and the
cursor location.

and must be re-executed whenever UUT power has been interrupted.

TEST PROGRAMS CALLED:
{none)

GRAPHICS PROGRAMS CALLED:

{none)

1

H

1

1

I

1

:

! This program must be executed before any video testing is performed,
1

1

I

1

1

{

|
!!!!!!"""!!!!!!!1""!"'"!!!!!!!!!!!!!!"""!!l!!!!""""!!!!!!!

1
1
I
!
i
!
1
1
1
1
1
t
1

setspace space (getspace space "l1/0%, size "byte"}

! Master Reset Command

Haster Reset Command

Write Initialization Register 0

Write Initialization Register 1

Write Initialization Register 2

Write Initialization Register 3

Write Initialization Register 4

Write Initialization Register 5
6
1
8
9

write ADDR 2, DATA [+
write ADDR 2, DATA 0
write ADDR D, DATA $48
write ADDR @, DATA $20
write ADDR 0, DATA 522
write ADDR 0, DATA $86
write ADDR 0, DATA 517
wrlte ADDR 0, DATA 34F
write ADDR O, DATA 9
write ADDR 0, DATA $2§
write ADDR 0, DATA 0
write ADDR O, DATA $10
write ADDR 0, DATA 0
write ADDR 0, DATA

write ADDR 0, DATA

write ADDR , DATA

Write Initialization Register
Write Initialization Register
Write Initlalization Register
Write Initialization Register
Write Initlalization Register 10
Write Initialization Register 11
Write Initialization Register 12
Write Initlalization Register 13

write ADDR 0, DATA Write Initialization Register 14
write ADDR 4, DATA Screen Start 1 lLower Reglster
write ADDR 6 Screen Start 1 Upper Register

write ADDR &, DATA
write ADDR $A, DATA
write ADDR $C, DATA
write ADDR SE, DATA
write ADDR 2, DATA $2

Cursor Address Lower Reglster
Cursor Address Upper Reglster
Screen Start 2 Lower Reglster
Screen Start 2 Upper Reglster
Enable Screen On Command

0
o
0
0
1
, DATA 0
0
0
0
0
9

end program

Figure 4-79: Initialization Program {video_init)

4-189

Video Output

program videe fill

I INITIALIZATION PROGRAM fills video RAM with every attribute & char
1
I TEST PROGRAMS CALLED:
{hone}

{none}

Text Files Accessed:
vid_filll

1

1

1

!

. !

GRAPHICS PROGRAMS CALLED: !
'

t

1

1

setspace space {getspace space "memory", slze "word")
writeblock file "vid filll", format "motorola"

end program

Figure 4-80: Initialization Program (video_fil1)

4-200

A

P

Video Output

program video fil2

!!.'!!.'!!!!!.'!!!!!!!!l!!.'!!!.'!!!!!.'!.'.'I!!!.'!!!!!!!!!!!!!!!!!!!.‘!.’!.’!!!.’!!!
! INITTALIZATION PROGRAM to £ill video BAM with Non-Blinking characters !
! !
! TEST PROGRAMS CALLED: [
H !
| GRAPHICS PROGRAMS CALLED; H
! {none) 1
! !
! Text Files Accessed: 1
! vid fi1112 1
!!!!!!.'!!!!!!!!!!.'!!!!!!!!!.’!!!!!!!!!I!!.‘!.'!!!!!!!!!!!!!.'!.'!.'!!!!.'!!!!!!!

setspace space {getspace space "memory™, size "wordw)
writeblock file "vid f1112", format “motorola®

end program

Figure 4-81: Initialization Program (video. fil2}

4-201

Video Qutput

Summary of Complete Solution for
Video Output 4.7.7.

4-202

The entire set of programs and files needed to test and GFI
troubleshoot the Video Output functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file. ‘

UUT DIRECTORY
(Complete File Set for Video Output)
Programs (PROGRAM);
TEST_VIDEO Functional Test Section 4.7.5
VIDEQ_FREQ Stimulus Program Figore 4-73
VIDEO_OUT Stimulus Program Figure 4-75
VIDEO_SCAN Stimulus Program Figure 4-77
LEVELS Stimulus Program Figure 4-92
VIDEO_INIT Initialization Program Figure 4-79
VIDEOQ_FIL1 Initialization Program Figure 4-80
VIDEQ_FIL2 Initialization Program Figure 4-81
Stimulus Program Responses (RESPONSE):
VIDEOQ_FREQ Figure 4-74
VIDEO_OUT Figure 4-76
VIDEO_SCAN Figure 4-78
LEVELS Figure 4-93
Node List (NODE): 7
NODELIST Appendix B
Text Files (TEXT):
VID _FILL1 Initialization Data File
VID_FILL2 Initialization Data File
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

e

Video Control

VIDEO CONTROL FUNCTIONAL BLOCK 4.8.

Introduction to Video Control Circuits 4.8.1.

After initialization by the microprocessor, the video control
block typically generates four major timing functions:

¢ Character timing for serializing character or dot graphics
information to the Video Output functional block.

® Address generation and timing control for accessing the
video RAM.

* Cursor timing and control to the Video Output block.
®* Vertical and horizontal sync signals.

The frequency of these signals may vary from about 60 Hz for
vertical sync to well over 10 MHz for pixel information. Figure
4-82 shows the timing of some of these signals.

Timing Signals

The vertical scan rate is the measure of how often the entire
video picture is drawn on the screen (usually 50 or 60 Hz). The
screen is scanned horizontally many times during each vertical
scan. If the video display is character-oriented, there might be
10 horizontal scans for each row of characters.

When set up properly, the timing outputs and video RAM
address outputs will repeat regularly at the vertical scan rate. All
the timing signals (such as the character clock, horizontal scan,
blanking, vertical sync, blink rate, and cursor signal) are
normally derived from the dot clock.

The cursor timing output is a“strobe which occurs when the
cursor address is sent out,

4-203

Video Control

Dot 16
Clock MHz
Video

Data

Character
Clock I}\.v'll.{iz
(~CCLK) et C e——

Dol-Relatad Timing

Character
{~CCLK)
Video
RAM
Addresses

4- 95 Cycles of Character Clock-bl—_
— —

HSYNC

_ Characler-Refated Timing

e [N LA TLTLT

le———— 240 Cydles of HSYNG —————»!

—

VSYNC

Video Frama Timing

Figure 4-82: Video Display Controller Timing

4-204

Video Control

Considerations for Testing and
Troubleshooting 4.8.2.

Video control circuitry can usually be tested in four steps.

1. Initialize the circuitry (set up the video display
controller registers if the implementation uses such a
chip).

2. Test for proper signature on the scan address lines
going to the video RAM to ensure that it cycles
through the proper addresses when displaying a
frame.

3. Check the vertical and horizontal sync frequency.

If the timing logic is used in several modes, the three
steps described above can be repeated for each mode.

4. Test the cursor strobe generator by clocking from the
character clock, starting at the beginning of the frame
and stopping at the end of the frame. You may need
to test for proper signatures at several cursor
positions. For this test approach to work, the cursor
cannot be in a blinking mode, '

The video RAM access logic, which allows the microprocessor
and the video display controller to share video RAM, must
arbitrate access to video RAM.

Since the microprocessor and the video display controller are not
always synchronous, it may be impossible to find a single clock
that gives stable signatures for all of the arbitration logic. One
approach to testing the arbitration logic is to count pulses on the
outputs of the video control logic while doing a series of writes
to video RAM.

The Demo/Trainer UUT contains an example of a memory
arbitration circuit which is hard to troubleshoot. It is a state
machine with seven inputs and three outputs. In testing this type
of circuit, you don't need to worry about how it works. All that

4-205

Video Control

is required is to exercise the inputs in a way that causes a stable
response on each output. When this type of circuit does not
function, it may be necessary to break some of the feedback
loops to isolate the problem to one component. This can be
done by using an 1/0 module to overdrive nodes in the feedback
loops.

The character clock will probably be the best clock signal for
most of the nodes, including scan address lines, video RAM,
and circuitry up to the shift register which converts character
information to pixel information. The response measurement
should start at the end of the vertical retrace and should stop at
the beginning of the vertical retrace. This means that the Start
and Stop external control lines from the 9100A/9105A Clock
Module or an 1/O Module should connect to the vertical sync
signal.

Video Control Circuit Example 4.8.3.

4-206

The Video Control Circuit of the Demo/Trainer UUT, Figure 4-
83, uses a Signetics™ 2674 advanced video display controller
(AVDC), U72, for video control. The 2674 is a programmable
device designed for use with CRT terminals and display systems
that employ raster-scan techniques. It is programmed with
CRT-terminal setup information, providing cursor, blanking,
and clock signals to the 2675 Attributes Controller chip (U78) in
the Video Output functional block.

The 2674 outputs to the Video RAM functional block on the
scan address lines DADDO00-11 in synchronization with the
horizontal and vertical sync signals.

The remaining circuitry in this block is a state machine. It is
normally inactive, but upon writing to video RAM it produces a
variable-length wait state to synchronize the microprocessor bus
cycle to the video character clock.

Figure 4-83 shows a timing diagram for the video control circuit
of the Demo/Trainer UUT.

Video Control

State machine for Video RAM access (U70, U71, U79, U0, Us1, U82)

~CCLK1.77 MHz J Input
| + 564 ns »
U79-8 __' Input
|
|
~SELECT A I Outpdt
|
- 125
| | ns
SELECT D I I | Gt
| |1 i
! 11 —
~VRAMRDY E } : / G
| I I
Processor Request SwitchMUX Enable Return Ready
to Write Video RAM to Processor Data to End Cycle

Address

Figure 4-83: Video Contro! Functional Block Timing

4-207

Video Control

Keystroke Functional Test 4.8.4.

4-208

Part A:
1. Clip a 40-pin clip module on I/O module 1 to test U72.

2. Use the the EXEC, I/O MOD, and SOFT KEYS keys with

the following commands and check the measured frequency
with the correct frequency ranges shown in the response
table of Figure 4-84.

EXECUTE UUT DEMO PROGRAM VIDEO INIT
FREQ CON I/O MOD 1 PIN <see response table>

Part B:

1. Connect the external control lines of the I/Q module 1 as

follows:

Clock to CCLK (U78-33)
Start to VSYNC (U88-13)
Stop to VSYNC (U88-13)
Enable to BLANK (U78-12)

. Use the EXEC, SYNC, and I/O MOD keys with the

following commands, and check the measurements with the
response table in Figure 4-85.

EXECUTE UUT DEMO PROGRAM VIDEOQ INIT
SYNC I/0 MOD 1 TO EXT ENABLE LOW ...
. CLOCK J §TaRT {4 sTOoP T
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
SHOW I/O MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

T

e

Video Control

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
You to translate part pin numbers to clip module Din
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!0 MOD PIN" column of the
response table in the Figure 4-85.

Part C:

Use the SYNC, PROBE, and WRITE keys with the proix: to
test the video ready signals. Compare the results with the
response table in Figure 4-86.

SYNC PROBE TO POD DATA

ARM PROBE FOR CAPTURE USING SYNC

WRITE BLOCK INTO MEMORY FROM UUT DEMO ..
. FILE VID FILL1 USING MOTOROLA

-.- ,{ADDR OPTION: MEMORY WORD)

SHOW PROBE CAPTURED RESPONSES

4-209

Video Control

Keystroke Functional Test (Part A)

4-210

CONNECTION TABLE
MEASUREMENT
(NONE} 1/0 MOD
ur2
RESPONSE TABLE
FREQUENCY
SIGNAL PIN 1/0 MOD PIN
MINIMUM MAXIMUM
GCLK urz-18 16 1.775 MHZ 1.780 MHZ
BLANK -7 17 14426 HZ 14435 HZ
VSYNG -8 18 S8 HZ 62HZ
HSYNC -19 19 16768 HZ 18774 HZ
CLOCK AND RESET LS 80286 BUS
MICRCPROCESSOA BUFFER
RESET 32MHZ e
TERDY
READY ADDAESS | o TYOECT
CIACUIT DECODE | gn VERH £
LN

-

Video Control

ADVANCED YIDED DISPLAY

- Ti Vi
CONTAOLLER [AvVOC) VIDEQ
2874 TELF_,
45Y 3Blae AL 4G 0o wr
cTAcz [3 HC :333
e 39, 6 HE
HE 30JTR cTRLS ADDOE
1a03_ 39,4 oaDD13| 2L NE DADCO3 |
IAGE 38,5 ommg 22 HC DADDOA
Tatl _ 37],; 0ADD3 4123 DADD14
oappig]2d daboig] £
papps |28 Dappoa] \sw5-8
VIOELT 2 | Dapos |25 __DADDOB VIDED
IRATTE 3 g DApo7 |27 DADDO7
e Dapos |28 DADDOE AkH
| TREAD s 1om paona (25 oweacs]
DapD4 [30 0AOGO4]
1007 Sloy Dapp3 [31 DAGOO3]
1008 4108 pappz 32 _0ADOOZ]
1065 13| pg Bappy |33 DAOOOL
Tooa 32| p, papDO |34 DADOOO
1663 ipa
T002_ 10]pa 7 cuAsoA
1001 b1 BLanK | 17___BLANK
1090 oo TEiK |18 TER
Hevne |18 HEYNC
VEYNG |18 __ VBTG
uze Y
BELR
or a L810

LS00
11 10
vt e s
L804 vez
) 32MHT .n“ 14 T
o1 LS4 i
ez READ 2 13 10 TR
TR 3
veeL o [FSE0 . via
kY s| V78
o B_j
s o 1
T 1020 12
1200 B D BET
7 :
\
W _,,
VR, ves |10 B8
2 BFLECTA
{

Figure 4-84: Video Control Functional Test (Part A)

4-211

Video Control

Keystroke Functional Test (Part B)

CONNECTION TABLE

MEASUREMENT CONTROL MEASUREMENT
(NONE} 10 MOD 170 MOD
CLOCK u78-33 ur2
START 1488-13
STOP UBB-13
ENABLE u78-i2
RESPONSE TABLE
SIGNAL PART PIN 170 MOD PIN SIGNATURE
DADOO ur2-34 34 4158
DADO1 -3 33 3F33
DADOZ -3z 32 AGSA
DADD3 -; kY 024
DADD4 -30 30 DEGD
DADOS -29 29 DEFA
DADOS -28 26 TACS
DADO? 27 27 0477
DADDSB -28 26 Eg41
DADOD 25 25 agB8
DAD10 -24 24 6080
DAD11 23 23 D869 or 0000*

*DAD11 has a signalure of D869 one half of the time and 0000 the ¢ther half of the time.

CLOCK AND

RESET

CLK

AESET

BERHZ

-

80286 aus
MICROPROCESSOR BUFFER
READY
HEAOY ADORESS | g TIOSLT
CIRCUIT DECO0E VAR

ek

4.212

T

Video Control

ADVANCED VIDEO DISPLAY
CONTROLLER (AVDC)

2674 -
+5v 38 4 N ADG11 |
Y 38 factl cTAL
TRz [3N g:%o‘%—
NC 35 6 NG T
H 33JTNTR cTRLa DADDOE
103 39|, DADDa3| 21 HC A0605
| Ja02 35 1,5 oappag{ 22 HE 0i0004
IA0Y 37 |4y pacey |23 DADO1Y
oaooio 24 Daposo] B

pApon [23 DADDOS] \sws-e
VIDELT 2 [op DADDB |28 __DADDOE

VIDED

THEITE 3 |y DADD? :; g‘%;
TREAD 0ADD6 Al
EAD 1 Imm paops [25___DADOOS

0aoDa |30 DADGO4

1007 S [31_Danoo3]
o7 Dapp3 |31 DADODS]
1008 o8 papnz [34 __DADDOZ
1005 oS papns |33 DADDOL
1604 Da Dapoo |34 DAGODD
1003 D3
1002 0 7 cuasom
bz CUASDA]
1004 D1 BLANK [17 BLANK
1000
oo ToR |46 TCLK
Wsyne |19 HSYNG
v 18 __VSYNG
yra YBYHE

ToLK
BT 3 LB10
= 90 v
ETRE T "
18) U70
TELK, L800

L3004
i

vez AEAD

L8B30

YIDEO
RAM

2
3
4
B[v7e -2
s
!

10

Figure 4-85: Video Control Functional Test (Part B)

4-213

Video Control

CONNECTION TABLE

Keystroke Functional Test (Part C)

MEASUREMENT
us2-3
us1-8
RESPONSE TABLE
SIGNAL PART PIN SIGNATURE TRANS COUNT
SELECTA 182-3 7A70 2048
VRAMRDY us1-8 0000 2048
CLOCK AND RESET |-m-S BUS
BUFFER
RESET 32rHZ
FEADY
REAQY ADDRESS . 'W
CIACUET DECODE VAAR.
VARRRDY

4-214

Pl

Video Control

ADVANCED VIDEO DISPLAY
CONTADLLER {AvOC) VIDEQ
2674 [
13V 351a0LL cTALs AT DADO4 out
: e 38 crace [SHC Da0007
HNe 3SITHTR cTAcs [BNC BaDO0E
_pa03 39 GADGOE
S oo ooos
Ta0i 975 DADD11 DADD44
DADD S0 o
SWE-8
_ I VIDELT 2 |we VIDEQ
THRYTE 3 | RAN
TRERD 1 |
1007
1608
Tood
Toba
ioos
1002
1001 37 BLANK
BLANK
1000 LR |18 ToR
HSvNe |48 _ Hswne
18 VEYNG
g YOG
| o
PR D 12
TAOD 8 3 ves 3.8 ser '
— —_—]
\\
T80 ..
8 {ims [0 EE
BELECTR

p——

Figure 4-86: Video Control Functional Test {Part C)

4-215

Video Control

Programmed Functional Test 4.8.5.

The ts¢_vidct! program is the programmed functional test for the
Video Control functional block. This program checks the video
controller IC (U72) and the video RAM ready generator outputs
U81-8 and U82-3 using the gfi test command. If the gfi test
command fails, the abort_test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block for
a discussion of the abort_test program).

program tst_videtl

! FUNCTIONAL TEST of the VIDEC CONTROL functicnal block,

1
1 1
! This program tests the VIDEC CONTRCL functlicnal block of the 1
| Demo/Trainer. The gfi test command and I/C module are used to !
| perform the test.
1
1
1
1
1

1
1
1
1
1
T
! TEST PROGRAMS CALLED:

t abort_test (ref-pin) If gfi has an accusation

f display the accusation else

! create a gfl hint for the

f ref~pin and terminate the test!
' program {(GFI begins trouble- !
1 shoot 1ng} . t
1

1 Setup
print *\nl\nlTESTING VIDEO CONTROL Circuit®
I Main part of test
podsetup ‘epable ~ready' “on"
if gfi test "U72-34" falls then abort test ("U72-34")
i1f gfi test “UB1-8" falls then abort test ("U81-8"}

i1f gfi test “U§2-3" falls then abort_test ("U82-37}

print “VIDEC CONTROL TEST PASSES"
end program .

Stimulus Programs and Responses _ 4.8.6.

\4-216

Figure 4-87 is the stimulus program planning diagram for the
Video Control functional block. The video data stimulus
program outputs data onto the data bus. The video freq
stimulus program initializes the video registers and then
measures frequency. The video_scan stimulus program
initializes video RAM by executing video fill, which fills video

P

Pk

Video Control

RAM with characters including blinking characters. The
reset_low stimulus program prompts the test operator to push
the Demo/Trainer UUT RESET pushbutton and measures the
level of the reset signal. The levels stimulus program stimulates
activity appropriate for measuring static levels on a number of
nodes in the Video RAM Ready (VRAMRDY) generation
circuit. The video_rdy stimulus program stimulates the Video
RAM Ready (VRAMRDY) generation circuit by writes made to
the write-only video RAM.

All the stimulus programs execute video_init before any
measurements are made on the video circuitry.

4-217

Video Control

Stimulus Program Planning

PROGRAM: RESET_LOW

PROMPTS THE OPERATOR TO PRESS THE RESET
KEY AND THEN CHECKS FOR A LOW LEVEL

MEASl.iREMENT AT:

U13-10

PROGRAM: VIDEO_FREQ

EXECUTES VIDEQ_IMIT AND MEASURES

FREQUENCY
MEASUREMENT AT:
U72-17.49.18 p
U70-11

- EXECAITES VIDEO_WKT, VIDED_PILY, AND
WEASURES ALL GIRCUITRY WHERE DATA IS

- CLOGKED THAOUGH BY GHARACTERS

INITIALIZATION PROGRAM; VIDECQ_INIT

OPERATING MODE

INITIALIZES VIDEQ REGISTERS TO STANDARD

MEASUREMENT AT:

{NONE}

CLOCK AND RESET

RESET 32MHZ

| ok 80286 US
HICROPROCESSOR BUFFER
READY
READY ADDACSS o ZEDSL
CIREUIT DECODE o VR ;
N
VARRAGY

4-218

T

Video Control

ADOVANCED VIDEQ DISPLAY
CONTACLLER {AVDC)
2674

VIDEO
ouT

+sv 36 [- A NG 040011
o Emard B
NG 30 6 NG [DADOOY |}
=N 4 INTA CTAL3 DADDOR
Ia03___ 39 21 HG DADDOS
[Ta02 38 :: g:gg:g 28 NC DADDO4
TADL 87|,y CADDY B3 0A0034
DAC10 24 DADO1O P
DAODS |23 Di0o0B] \SHS-8
VIGEET 2 |oe Daooe |26 DADOOB
TWRITE 3 [gn DADD? :; J:%g;
DADDB
IREAD 2 @ OADDS |29, DAGDOS
DanD4 |20 DADODA
8¢ DaDOO3
88 DAGGOZ
[33 D661
34 OADCOO
7 cuAsoR
7 BLANK
16 TEK
18 HSYHNC
B VESYNG
TER
oE 3 LSio
99 ; e
w125 s om
18] u7e
TTLE,) Ls00
2

LS04
L

s LS

VIDED
RAM

L2910

13,9€
10 &8
9 TELECTR

Figure 4-87: Video Control Stimulus Program Planning

4-219

Video Control

program videc data

stimulvus programs and response files are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.
|

| This stimulus program is one of the programs which creates activity
| in the kernel area of the UUT. These programs create activity with
I or without the ready circuit werking properly. Because of this, all
! the stimulus programs in the kernel area must disable the READY input !
! to the ped, then perform the stimulus, then re-enable the READY input
! to the ped. The 80286 microprocessor has a separate bus controller;
| for this reason, disabling ready and performing stimulus can get the
! bus controller ocut of synchronization with the pod. Two fault
! handlers trap ped timecut conditions that indicate the bus controller
! is out of synchronization. The recover() program is executed to
I resynchronize the bus controller and the pod.
I
! TEST PROGRAMS CALLED:

recover {} The 80286 microprocessor has al
bus ccntroller that is totaly !
separate from the ped. 1In t
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronlzes the ped and the!
bus contraller.

{nene)

! Local Varlables Modlfied:
recover_times Reset to Zero
devname Measurement device

1
!
1
1
1
1
1
1
1
! GRAPHICS PROGRAMS CALLED:
1
1
4
t
I
]

! Maln Declarations 1
lIIII‘IIIlllllr1lr1l|ll|lll||IIIlllIIIr1IllIIl1I!IIII1IIIIITII1I|I1Ir|||ll

declare global numeric recover times

R RN IR R R R R R RN R R R R R RN R R R A N N NS A RN R RN N R A N A RN R RN

! FAULT HANDLERS: t

NN N NN N S RN RN RN NN N S AN N AN AR NN R RN RN RN RN RN RN
handle pod_ timeout_enabled line
recover ()
end handle
handle pod_timeout receovered
racover {)
end handle

{continued on the next page)

Figure 4-88: Stimulus Program (video_dala)

4-220

o

T

e

Video Control

TSI T Nt SR It tnaaa iRt e R aR R R RaR e e R R NRR R R RET!

I
{ Main part of STIMULUS PROGRAM 1
!

T T Rt s RN R R RN R R A RN R AR a R R R Rt AR RN NR R R R R Y

recover_times = 0
! Tet GFI determine measurement device.

if {gfi control) = "yes" then
devname = gfl device

else
devname = “/modl"

end 1f

print "stimulus Program VIDEC DATA"

1 Set addressing mode and initialize.

option = getspace type “i/o", size "hyte*
setspace { option }

write ADDR 8, DATA $FF I Cursor Address Lower
write ADDR $A, DATA 0 ! Cursor Address Upper
write ADDR $C, DATA SRA ! Screen Start 2 Lower
write ADDR $E, DATA $35 1 Screen Start 2 Upper

| Setup measurement device.
reset devlice devname
sync device devname, mode rpod"
sync device "/pod", mode "data"
1 Present stimulus to UUT.
arm device devname Start response capture

read addr 3 Lowsr Cursor Addr Reg

i

‘ !
read addr 3R ' Upper Cursor Addr Reg

!

!

I

read addr $C Lawer Soraen Start 2
read addr SE Upper Screen Start 2
readout. device devname End rasponse captyie

end program

Figure 4-88: Stimulus Program (video_data) - continued

_ 4-221

Video Control

STIMULUS PROGRAM NAME: VIDEO DATA
DESCRIPTION:

Response

Node Learned Async Clk
Signal Src With S1G VL IVL
uv2-8 PRCBE 0009 10
ur2-8 I1/0 MODULE 0009 10
ur2-9 PROBE 000A 10
u72-9 1/0 MODULE 000A 10
u72-10 PROBE 0009 10
u72-10 I/0 MCDULE 0009 10
072-11 PROBE 000A 10
U72-11 I/0 MODULE 0QOCA 10
U72-12 PROBE 0009 10
u72-12 I/0 MODULE (008 10
U72-13 PROBE 000B 10
072-13 I/0 MODULE 000B 10
U72-14 PROBE 0008 10
U72-14 I/0 MCDULE 0008 10
U72-15 PROBE 000A 10
u72-15 I1/0 MODULE OCOA 10

SIZE: 318 BYTES

Data
Counter Priority
Mode Counter Range Pin
TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

TRANS

Figure 4-89: Response File (video_data)

4-222

T

Video Control

pregram video_rdy

! STIMULUS PROGRAM activates video ready clrecultry, !
1 r
! Stimuluvs programs and response flles are used by GFI to backtrace !
! from a failing node. The stimulus rrogram must create repeatable UUT !
I activity and the response file contains the known-good responses for |
! the outputs in the UUT that are stimulated by the stimulus program, !
1 r
! TEST PROSRAMS CALLED: !
! (none} !
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none}

! 1
! Local Variables Modifled: !
! devname Measurement device !
!1!!!!I!E!!!I!!!!!!!!!!!!!!!!!!!!!!l!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!l!!

handle pod timeout_enabled line
reccver ()

end handle

handle pod timecut recovered
recover {}

end handle

recover_times = 0
! Let GFI determine measurement device.

if (gfl contrel) = “yes" then
devname = gfi device

else
devname = "/probe"

end if

print “Stimulus Program VIDEO RDY"

! Set addressing mode and Set up measurement device,
reset device devname
setspace space (getspace space "memory", size "word"}
sync device devname, mode "pod"
sync device "/pod", mode "data"

! Present stimulus to UUT

arm cdevice devname ! Start response capture.
toggledata addr $20000, data 0, mask SFFEF ! Create a burst of writes,
readout. device devname ! End response capture,

end program

Figure 4-90: Stimulus Program (video_rdy)

4-223

Video Control

STIMULUS PROGRAM NAME: VIDEQ RDY

DESCRIPTICN: SIZE: 1,411 BYTES
Response Data
Node Learned Async Clk Counter Priority

Signal Src With s1G VL iIVL Moede Counter Range Ein
ug2-2 PROBE 0000 10 TRANS
ug2-2 I/0 MODULE Q000 10 TRANS
uB2=-3 PROBE 3951 10 TRANS
ug2-3 I/0 MODULE 3951 190 TRANS
ugz-7 PROBE 0000 10 TRANS
ug2-7 I/0 MODULE 0000 10 TRANS
U82-6 PROBE 3951 10 TRANS
u82-10 PROBE 3951 10 TRANS
UB2-10 I/0 MODULE 3951 140 TRANS
UBz-11 PROBE 0000 10 TRANS
ug2-11 1/0 MODULE 0000 10 TRANS
usz-15 PROBE 0000 10 TRANS
UB2-15 1/0 MODULE 0000 1 © ' TRANS
Ugz2-14 PROBE 3951 10 TRANS
ysz-14 I/0 MODULE 3951 10 TRANS
usl-é PROBE 3951 10 TRANS
Usl-6 I/0 MODULE 3951 10 TRANS
ugl-8 PROBE 0000 10 TRANS
Ugl-8 I/0 MCODULE 0000 10 TRANS
ygl-12 PROBE 3551 10 TRANS
ugo=-6 PROBE 0000 10 TRANS
Ug0-8 PROBE 3951 10 TRANS
Ug0=-12 PROBE 3551 10 TRANS
U78-8 1/0 MODULE 3951 10 1 TRANS
U71-3 PROBE 0000 10 TRANS
U71-3 I/0 MCDULE 0000 10 TRANS
U71-6 PROBE 0000 10 TRANS
U7i-6 I/0 MODULE 0000 10 TRANS
u71-8 PROBE 0000 10 TRANS
ul-8 I/C MODULE 0000 10 TRANS
U71-11 I/0 MODUDLE 3951 10 TRANS
u70-3 I/0 MODULE 3951 10 TRANS
u70-6 1/0 MODULE 3951 10 TRANS
u70-8 I1/0 MODULE 3951 10 TRANS
u70-11 PROBE 10 TRANS
U70-11 I/0 MODULE 10 TRANS
u62-2 PROBE 3951 10 TRANS
U62-2 I/0 MODULE 3951 10 TRANS
Ug2-§ I/0 MODULE 0000 10 TRANS
Ug2=-10 I/0 MODULE 3951 1 TRANS
U62-12 I/0 MCDULE 3951 1 TRANS
U61-6 I1/0 MODULE 3951 10 TRANS
U61-3 1/0 MODULE 3951 10 TRANS
U6l-8 I/0 MODULE 3951 1 TRANS

{continued on the next page)

Figure 4-91: Response File (video_rdy)

4-224

Video Control

U84-4
Ug4-7
Ug4-9
Ug4-12
U83-4
Ug3-7
Ug3-9
ug3-~12
U73-7
U73-9
U73-12
U639-18
U69-1¢
U68-14
U68-12
Ué9-9
Us9-7
Us9-~-5
U69-3
U6g-18
U68~16
UEB-14
Us8-212
UeB-9
uéa-~7
U68-5
Ueg-3

I/0 MODULE
I/0 MODULE
170 MODULE
I1/0 MODULE
I/0 MODULE
I/0 MODULE,
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I1/0 MODULE
1/0 MODULE
I/0 MODULE
I/ MODULE
I/0 MODULE
I/C MODULE
I/0 MODULE
1/¢ MODULE
T/0 MODULE
1/C MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE

Figure 4

0 TRANS §3G0-9500

4] TRANS 14000-17500
0 TRANS 30000-36000
4] TRANS 61000-71600
0 TRANS 950-1300

0 TRANS 1400-1800

0 TRANS 2300-2700

0 TRANS 4100-4700

V] TRANS 475-800

4 TRANS 500-900

0 TRANS 700-1000

4] TRANS

0 TRANS
0 TRANS
0 TRANS
0 TRANS
0 TRANS
o] TRANS
4] TRANS
0 TRANS
4] TRANS
0 TRANS
0 TRANS
0 TRANS
0 TRANS
0 TRANS
0 TRANS

-91: Response Filg {video_rdy) - continued

4-225

Video Control

program levels

! STIMULUS PROGRAM to measure level history.

1 1
! stimulus programs and response files are used by GFI to backtrace !
| from a failing node. The stimulus pregram must create repeatable UUT !
| activity and the response file contalns the known-good responses for !
| the outputs in the UUT that are stimulated by the stimulus program. |
I N I
! This is a general purpese routine that is used to characterize the !
! level history both sync and async of a nede that may not lend itself !
! to signatures or frequency. !
1 1
1 TEST PROGRAMS CALLED:

! (none)

| |
! GRAPHICS PROGRAMS CALLED:

! {none) |
| |
| Local Variables Modified:

! devname Measurement device

R RN RN R R R s e R N R R R R R R R R R R R AR R R R SRR R N

! FAULT HANDLERS: !
llll'l||1Illlf.||VI||T|l1|||1|l1|||ll||1|||I!l!llIIllf1|‘|||1|f|ll?llllll|l

handle pod_timeout_no_clk
end handle

!!!!!|I1Illlll{[!!![lI1I|I1|l1||||l||1|||||Il|!.I!I!I1IrIIITIlIIII1IlIIIlI
! Let GFI user select which I/0 module to use.
if (gfl contrel} = "yes"™ then
devname = gfi device
else
devname = "/modl*
end if
print "Stimulus Program LEVELS"
| Set desired measurement modes.
reset device devname

1 No stimulus is applied; response ls async levels.

arm device devname I Start response capture.
readout device devname ! End response capture

end levels

Figure 4-92: Stimulus Program (fevels}

4-226

A

ju—

Video Control

STIMULUS PROGRAM NAME: LEVELS

DESCRIPTION: SIZE: 1,435 BYTES
——————————————————— Response Data
Node Learned Async Clk Counter Priority

Signal Src With 851G ILVL IVL Mcde Ceunter Range Pin
uB2-2 PROBE o TRANS
ug2-2 1/0 MODULE 0 TRANS
vez-3 PROBE 1 TRANS
0g2-3 I/0 MODULE 1 TRANS
vez-7 PROBE 0 TRANS
Gg2~1 I/0 MODULE 0 TRANS
Us2=6 PROBE 2 TRANS
Ug2=-10 PROCBE Q TRANS
us2-10 1/0 MODULE Q TRANS
U82-11 PROBE 1 TRANS
ugz2-11 I/0 MODULE 1 TRANS
vez-15 PROBE 0 TRANS
Ugz-15 I/0 MODULE 0 TRANS
Ug2-14 PROBE 1 TRANS
U82-14 1/ MODULE 1 TRANS
Ugl-6 PRCBE 1 TRANS
U816 1/0 MODULE 1 TRANS
v81-1a PROBE 1 TRANS
UBl1-8 I/0 MODULE 1 TRANS
uBl1-12 PROBE a TRANS
Us0-6 FROBE 1 TRANS
Usc-8 PROBE 1 TRANS
ugo-12 PRCBR 1 TRANS
U?9-8 1/C MODULE 1 TRANS
U71-3 PROBE 0 TRANS
u71-3 1/0 MODULE o] TRANS
U7l-¢ PROBE 0 TRANS
U71-6 I/0 MODULE Q TRANS
u71-8 PROBE 0 TRANS
U71-8 I1/0 MCDULE 0 TRANS
071-11 I/0 MODULE 1 TRANS
U70-3 I/¢ MODULE 1 TRANS
u?0-6 I/0 MODULE 1 TRANS
u70-8 I/0 MODULE 1 TRANS
u70-11 PROBE 10 TRANS .
U70-11 I/0 MCDULE 10 TRANS
Us2-2 PROBE [+ TRANS
Us2-2 1/0 MODULE 0 TRANS
U61-8 I/ MODULE 1 TRANS
U62-6 1/0 MODULE 0 TRANS
U6l-3 I/0 MODULE 1 TRANS
Ubl=-6 I/0 MCDULE 1 TRANS
UB4=-4 I/0 MODULE 19 TRANS
ug4-7 . I/C MODULE 10 TRANS

{continued on the next page)

Figure 4-93: Response File (fevels)

4-227

Video Control

Ug4-9
uga-12
Ua3-4
0a3~7
us3-2
u83-12
073-7
u73-9
Ur3-12
U69-138
U69-16
U69-14
Ued-12
Ue9-9
ueg-7
U69-5
Us9-3
Uss-18
U68-16
U68-14
u6g-12
U68-2
ueg-7
U68-5
u68-3
J4-6
J4-6
J4-10
J4-10
R34-1
Ds1-2
R26-1
R26-1
R32-1
R4-1
R61~1
R77-1
R78-2
R79-2
R90-1
U26-3
U13-4
U13-4
U13-12
U13-12
C13-1
C4-1
U14-55
U14--65

4-228

I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MCDULE
1/0 MODULE
1/0 MODULE
I1/C MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
T/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
1/0 MODULE
1/C MODULE
I/C MODULE
I1/0 MODULE
I1/0 MODULE
I1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE
I1/0 MODULE
PROBE
I/0 MODULF
PROBE
PROBE
PROBE
I/0 MODULE
PROBE
PROBE
PROBE
PRCBE
PROBE
PROBE
PROBE
I1/0 MODULE
PROBE
I/0 MODULE
PROBE
/0 MODUIE
PROBE
PROBE
PROBE
1/0 MODULE

Figure 4-93: Response File (levels) - continued

e e e e e I T S S I
o000 O0O0C0OOoCo00O0O 0000000 DOO

o e

o

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS

T

Video Control

Summary of Complete Solution for
Video Control 4.8.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Video Control functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Video Control)
Programs (PROGRAM):
TST_VCTRL Functional Test Section 4.8.5
RESET_LOW Stimulus Program Figure 4-115
VIDEQ_DATA Stimulus Program Figure 4-88
VIDEQO_FREQ Stimulus Program Figure 4-73
VIDEQ_RDY Stimulus Program Figure 4-90
VIDEQ_SCAN Stimulus Program Figure 4-77
LEVELS Stimulus Program Figare 4-92
"VIDEQ_INIT Initialization Program Figure 4-79
Stimulus Program Responses (RESPONSE):
RESET LOW Figure 4-116
VIDEG_DATA Figure 4-89
VIDEO_FREQ Figure 4-74
VIDEO_RDY Figure 4-91
VIDEQ_SCAN Figure 4-78
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-229

Video Control

(This page is intentionally blank.)

4-230

Video RAM

VIDEO RAM FUNCTIONAL BLOCK 4.9.

Introduction to Video RAM 4.9.1.

Video RAM blocks come in several forms. Here are some of the
common configurations:

Character-oriented video RAM, with secondary character-
generation ROM or RAM.,

Pixel-oriented video RAM.
Combinations of the above.

Access to video RAM can be provided in several ways,
including:

The video display controller may directly access
microprocessor memory by stealing memory cycles.

Video RAM may be separate but still mapped into
microprocessor memory space. In this case, access to this
memory may be write-only or read/write.

Access to video RAM may be through I/O-mapped
registers.

If character-generation RAM is used, access to characier
RAM muay be different than access to video RAM.

Considerations for Testing and
Troubleshooting 4.9.2.

Testing of video display circuits is complicated by the fact ihat
there may be as many as three separate hierarchical memory
spaces, each of which may be sectioned for use only in a
particular mode of operation:

4-231

Video RAM

» Video RAM
A Character ROM or RAM
¢ (Color palette RAM

Video RAM

4-232

If video RAM has read/write access and is mapped into the
microprocessor memory space, it can be tested with the
9100A/9105A's built-in RAM test (Section 4.4 discusses this
built-in test). If video RAM does not have read access, the
video RAM output must be tested with the I/O module or the
probe. The 9100A/9105A external Start and Stop control lines
should be connected (probably to vertical sync) so that one
frame is captured. The 9100A/9105A external Clock control
lines should be connected to the appropriate clock signal so that
valid RAM output will be captured for each read cycle.

With the above connections, the following procedure will
usually test video RAM:

1. Initialize the video circuitry, if not already initialized.

2. Initialize the video RAM with blinking enabled. The |

TL/1 writeblock and writefill commands can be used
to do this.

3. Set the video control mode so that it accesses as
much video RAM as possible.

4. Measure signatures at the video RAM output and
compare them to good signatures.

5. Steps 2, 3, and 4 can be repeated, varying the test
pattern loaded into video RAM. For example, with
16-bit-wide memory try test patterns like FFFF,
0000, 7777, and AAAA, or ramping data over the
entire video RAM.

e

e

e,

Video RAM

Character ROM or RAM

If the video RAM is character oriented, with secondary character
ROM or RAM, a pattern can be written into the video RAM that
cycles through the character-memory addresses. In the case of
character ROM, signatures collected at the ROM outputs serve to
test the ROM. In the case of character RAM, a pattern must be
loaded into the RAM before testing.

Video RAM Circuit Example 4.9.3.

Figure 4-94 shows the Video RAM functional block for the
Demo/Trainer UUT. Components U74 and U85 provide 2K
bytes of static video RAM. When addressed over the main
address bus (JAG1-11), video RAM is used to store ASCH
character codes supplied by the microprocessor over the main
data bus (DB00-15). The system is character-mapped: a
specific video RAM address maps into a physical location on the
monitor screen.

The video control logic sequentially samples these addicsses
over lines'DADDO0-11 to generate display characters using the
ASCII codes at these addresses and the corresponding display-
character information in the character PROM (see U77 in the
Video Output functional block).

The multiplexers U73, U83, and U84 select between the video
control address lines (DADO00-11) and the buffered
microprocessor lines (IA01-11). The selection control for this
multiplexing comes from the Video Control functional block.

4-233

Video RAM

Keystroke Functional Test 4.9.4.

1. Connect the external control lines of I/O module 1 as
follows: '

Clock to CCLK (U78-33)
Start to VSYNC (U88-13)
Stop to VSYNC (U88-13)
Enable to BLANK (U78-12)

2. Use a 24-pin clip module on side A of I/O module 1 to test
the video scan signal. Use the EXEC, SYNC, and I/O MOD
keys to enter the following commands. Then, compare the
measurements with the response tables in Figure 4-94.

EXECUTE UUT DEMO. PROGRAM VIDEO INIT
EXECUTE UUT DEMO PROGRAM VIDEQ FIL1
SYNC I/0 MOD 1 TO EXT ENABLE LOW ...
. CLOCK | sTarT | stop T
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
SHOW I/0 MOD 1 PIN <see response table> ..
. CAPTURED® RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!O MOD PIN" column of the
response table in Figure 4-94.

(This page is intentionally blank.)

4-235

L L L ——

_Keystroke Functional Test ‘-

CONNECTION TABLE

MEASUREMENT CONTROL MEASUREMENT \
{NONE) ~ IFOMoD 170 MOD
CLOCK u78-33 u74
START Usa-13 ues
STOP uBg-13
ENABLE u78-12
RESPONSE TABLE
SIGNAL PART PIN 1/0 MOD PIN SIANATURE
DBOD u74-9 ’ 9 4165
DB -0 10 9F33
DBO2 -1 : 20 ABSA
D803 -13 3 0024
0BO4 -4 32 DESD
DBROB -5 1 D6FA -
DBOS -16 12 TACS
DBOT -17 13 0477
DBOs Us5-9] AB14
[b]:0] 10 10 c2eB
D810 -1 2% boow
opn =13 k] BFAA
pat2 -4 ” 6925
DB13 -18 1" 8100
DB 16 12 BEAB
[+ T A7 : 13 ADDA
CLOCK AND RESET |—S% o 80286 Bus
MICROPAOCESSCR BUFFER
TERDY
READY VRAROV VIDED il 3
CIRCUIT CONTROL - N

4-236

Video RAR

F157 SWe-6
2 fa 6 . 11
1ai1 5 |os]
1A10 115,
1400 14 [an gyl NC 2018
ay| 7 _AB1o AB4 19 1o
NC 3 _lig a3y 9 _ABOS ABO 22 |,g
DADD1D 5 log 4y|12_ABOB AB0) 23 ha
DADDDG 10 Jag 1T 280 a7 107}47.__DBO7
DAOO08 13 Jn AB0 2 6 105l 3%, PBOS)
ABD! 3 s 105 25__PB0S
A gel ABO4 4 s To4[24__0BO4
EE ABO| 5 Jua Jo3[22__0803]
uz3 ABG 6 |pn 102|231 __DBO2]
ABO 7 a1 101|390 __0BO01
ADOG 8 o Too[50800
F 157
ADB n 20 57
A07 o EXS =3
AQG 1134 i8 I=F
E] A [as sv|_4 ABO7 uz4
2v]_.7 ABOG
BADDOY 3_lie ay[@ 4R05
GADDOB 6 |og 4y[32 ABGA
CAO005 10 |ag
0AGD04 13 |4
1_lsEl
165 2016
ua3 AB10 19 fig
AB0D B2 [ug
ABOB 23 [ag
F157 ABG A7 107} 17 0B16
1404 2 [1a ABO| 2 | Jos[16 DB1a
TAQA 5_loa ABO 3 |ag 10s{15_ DB13|
TA02 [EN ABOA 4 as Tasq| 24 DB12
TAO1 141, ty|l__4 ABO3 ABO. 5 |aq 103/39 __DBiy}
ay| 7 AB0Z ABO 8 o Toz[dy DB1o]
DADDD 3 lia ay] 9 ARO1 AS0 7 a1 To01[+0__DBOB,
DADDG 6 lon ay| L2 ABOD A60 6 o Too| 8 _DBOB|
DADOG 10 |2
DADDC 13, 20
21
1 lgr 18,
15 s e ues
B4 |
~
| SELECTA
L8244
1035 2 [y 1yg|d8 D818
1034 4 | a0 1yg[i6. DB14]
10 1A3 1y3|14__DB13
|12 DBi12
DB11 |
| 7 D0B10 |
Lg04 DB09
TBHE 1 1 liﬂ\ 0808
us2
LS04
1A00 QDA 4 800
B b8
use
L5244
I007 2 Jji8 oso?
1006 4 ::é ::, 6 0BO6
1008 1A3 iya3[14 OBOS
o ize] ite vefie—oeoy
3 Ll2ay 213 3 |
SELECTO 1002 13| 502 avz|? DBC2
1001 243 2vald __ DBBO1
1000 oa4 Dy4|d __ 0BGD
1
1 lBuTs
use

Figure 4-94: Video RAM Functional Test

4-237

Video RAM

Programmed Functional Test 4.9.5.

The st vidram program is the programmed functional test for
the Video RAM functional block. This program checks the two
RAM ICs U74 and U85 using the gfi test command. If the gfi
test command fails, the abort_test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block
for a discussion of the abort_test program).

program tst_vidram

1 FUNCTIONAL TEST of the VIDEC RAM functional block.
1

! This program tests the VIDEQ RAM functional bleck of the Demo/Traliner.

H

!

!

! The gfl test command and I/0 module are used Lo perform the test, 1
! 1
1

!

!

!

! TEST PROGRAMS CALLED:

! abort_test (ref-pin) 1f gfi has an accusation

{ display the accusation else

! create a gfi hint for the

! ref-pin and terminate the test!
! pregram (GFI begins troukle- !
1 shooting). !
1

I Setup

print "\pl\nlTESTING VIDEQ RAM Circuit"
! Main part of Test

podsetup 'enable ~ready' “on"

if gfi test “U74-9" fails then abort_test ("U74-9%)
if gfi test "U85-9" falls then abort_test ("U85-9"}

print "“VIDEC RAM TEST PASSES
end program

Stimulus Programs and Responses 4.9.6.

4-238

Figure 4-95 is the stimulus program planning diagram for the
Video RAM functional block. The video scan stimulus program
initializes video RAM by executing video_fill, which fills video
RAM with characters including blinking characters. The levels
stimulus program provides the appropriate stimuli to measure the
asynchronous level of various outputs. The video_rdy stimulus

Video RAM

- program stimulates the Video RAM Ready (VRAMRDY)
generation circuit by writes made to the write-only video RAM.

All these stimulus programs (except levels) execute video _init
before any measurements are made on the video circuitry.

4-239

Video RAM

Stimulus Program Planning
PROGRAM: LEVELS ORI VO Y

MEASURES STATIC LEVELS

MEASUREMENT AT:

u62-6

uUe1-3.6

Lg4-129,74
ues3-129,74
U73-1298,7
U69-3,6,79,12,14,16,18
Ues-3,5,7.9,12,14,16,18

INITIALIZATION PROGRAM: VIDEO_INIT

- INITIALIZES VIDEO REGISTERS TO STANDARD
PROGRAM: VIDEO_SCAN 7 . OPERATING MODE

EXECUTES VIDEO_INIT, VIDEO_FIL1, AND '
MEASURES ALl GIACUITRY WHERE DATA IS MEASUREMENT AT:
CLOGKED THROUGH Y CHARAGTERS

[NONE)

INITIALIZATION PROGRAM: VIDEO_FIL2

INITIALIZES VIDEO RAM WITHOUT BLINKING

CHARACTEAS
MEASUREMENT AT:
INITIALIZATION PROGRAM: VIDEQ_FIL1
{NONE)
INITIALIZES VIDEO FAM WITH BLINKING
CHARACTERS
MEASUREMENT AT:
(NONE)
CLOCK AND RESET L 80286 BUS
MICROPROCESSOR BUFFEA
i .)
TEADY
READY ¢ VRAH VIDEQ -
CIRCUIT CONTAOL .

4-240

T

Video RAM

o

F157 SH5-6
2 fia Eeoll
Iall 5 laa
TALG i1la,
1a08 140, 1yl 4 N 2016
av| 7 aBl0 AB40 19 149
NC 3 |i;s 3v[9 ABow AB09 22 g
DADD1LO ® lop ay|12_ABOE ABOS 23 [ag
0A0008 10]ag T Ta807 1 |z
0A0D08) e ABOS EXNS
2805 3 |ym
1 |5e ABO4 4 Tia
15 k= ABO 5 a3
y73 260 5 o
ABG ? Iaq
AB0 8 o
Fis57
ADB 20
ALY i ai‘%
ACE 1|5, 8o
AGS 4 lan 1y|_4 ABO7 Uzs
2y|_7 ABoE
DADDO? 3 [ig 3y 9 ABOH
DADDOG 6 log ay| 12 ABGA
DADDOS 30 |30
DADDOA 13 |.q
1_eel
3515 2016
[7]:k} AB1! 19 10
ABO) 22 |,g
AB0) EEN
£157 ABO 2 107
A04 2 fia AB0E 2 s 106/
A03 5 loa ABOS 3 as o5
A02 113, ABOA 4 Jng To4 12|
A01 1a]ia yy|_4 ABDD ABO3 5 las 103{33 0811}
2v| 7 ABO2 ABOZ 6 oz To2f iy 0810
DADDY 3 iy5 3v|_BABOI ABO1 7 s 10110 DBGY
DADDO 6 |og 4y, 32 ABOO ABOO CIY Tool_8 _oAD
DADDO 10135
0AQDOO EY 20 fo=
aq
1 lser 18
15k ues
U4
~
SELECTA
L5244
1045 2 laas ava
1014 A |4.2 gy
1813 6 1443 1v3
10 B Jiaag 1va
10 2a1 2Y1
10 242 2Y2
LS04 Ls0o 1009 45)343 av3
TBHE 1 i 1 100 284 2Y4
2 | us1 h2. |
us2 (19]3
usg
Ls04
noo% 4 00
5
usz
1007
ID06 a4 |
1605
1004
00
SELECTD 100z
100
000

Figure 4-95: Video RAM Stimulus Program Planning

4-241.

Video RAM

Summary of Complete Solution for
Video RAM

4-242

4.9.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Video RAM functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory

(you could consider the functional block to be a small UUT), but

in addition shows the use of each program and the location in

this manual for each file.

Section 4.9.5
Figure 4-92
Figure 4-90
Figure 4-77
Figure 4-79
Figure 4-80
Figure 4-81

Figure 4-93
Figure 4-91
Figure 4-78

Appendix B

Appendix A

UUT DIRECTORY
{Complete File Set for Video RAM)
Programs (PROGRAM):
TST_VCTRL Functional Test
LEVELS Stimulus Program
VIDEQ RDY Stimulus Program
VIDEO_SCAN Stimulus Program
VIDEQ_INIT Initialization Program
VIDEO_FIL.1 Initialization Program
VIDEO_FIL.2 Initialization Program
Stimulus Program Responses (RESPONSE):
LEVELS
VIDEQ_RDY
VIDEO_SCAN
Node List (NODE):
NODELIST
Text Files (TEXT):
VID_FILL1 Initialization Data File
VID_FILL2 Initialization Data File
Reference Designator List (REF):
REFLIST
Compiled Database (DATABASE):
GFIDATA

Compiled by the 9100A

Bus Buffer

BUS BUFFER FUNCTIONAL BLOCK 4.10.

Buses and Bus Buffers 4.10.1.

In addition to the bus at the pins of a microprocessor, many
microprocessor-based designs include additional internal buses
connecting the microprocessor, memory, I/O devices, and other
circuitry. These internal buses are often separated by buffers or
latches which complicate testing and troubleshooting,

For purposes of testing and troubleshooting, a bus is a group of
signals that operate in an identical manner, such as an address or
data bus. The bus is a connection between a sending output and
one or more receiving inputs. For internal buses, the sending
and receiving components may be buffers. Buffers separate
internal buses from the microprocessor bus. A fault such as two
buffered address lines tied together cannot be directly detected
from the microprocessor bus. Thus, some faults on the buffered
bus may go undetected by the built-in BUS TEST.

The key to testing a bus is that while there may be multiple
outputs to the bus, only one should be active at any time. Each
bus has an associated set of control and status lines which must
also be tested.

Considerations for Testing and
Troubleshooting 4.10.2.

There are several methods of testing bus buffers. For buses, it
is usually desirable to test all combinations of bus signal levels
to verify that:

® Alllines are drivable.
® No two lines are shorted together.
* Nolines are open between the master and the receivers.

4-243

Bus Buffer

This is particularly desirable for data and address buses, whose
lines are often physically adjacent. These lines may be subject to
manufacturing defects and failure modes, such as:

¢ Over-etching of traces causing open lines.

® Under-etching of traces causing shorted lines.

®* Solder bridges causing shorted lines.

®* Faulty or damaged parts causing lines to be stuck or open.

® Faulty or damaged parts that have incorrect logical
behavior.

Bus and Buffer Testing Capabilities

4-244

A ramp function is useful for testing buses and their associated
buffers. The ramp function is a binary progression (i.c. a
sequence of ascending numbers) covering all combinations of
signal values. The ramp counts through all the values, starting
at the lowest and ending at the highest. For large groups of
signals, ramping over the full range can take considerable time.
A means of ramping through a limited range by selecting a group
of bits via a mask is therefore provided. For example, a 32-bit
address bus may be covered by performing four ramping
operations for each set of 8 bits (each group of which is
probably associated with a particular buffer). This requires only
4x28 or 1024 operations vs. 232 or 4.3 billion operations!

To troubleshoot a bus effectively, ramping operations must
cover all normal transitions for logically adjacent lines. In the
example above, suppose ramping operations covered address
lines AO through A7, A8 through A1S5, etc. If A7 and A8 are
tied, the fault may not be discovered. It is therefore advisable to
overlap ramping operations in order to provide the additional
fault coverage. A portion of a TL/1 stimulus program might
look like this:

Pl

Bus Buffer

rampaddr addr $F0000000, mask S1FF
rampaddr addr $F0000000, mask S1FFQO0
rampaddr addr $F0000000, mask $1FF000Q
rampaddr addr $F0000000, mask S$FFO00000

There would be 3 x 29+ 28 or 1792 iterations vs. 1024 in the
preceding example. Overlapping ramp functions usually takes
little additional test time.

Several built-in ramp and toggle stimulus functions are available:
In TL/1, the commands are rampaddr, rampdata, toggleaddr,
toggledata, and togglecontrol (see Section 3 of the TL/1
Reference Manual). From the operator's keyboard, the STIM
key provides these functions (see Section 5 of the Technical
User's Manual).

As described earlier in Section 2.2, the 9100A/9105A can make
five types of measurements to determine whether a node is good
or bad. The list below describes how these five measurement
types relate to bus buffers, The combination of CRC signatures
and asynchronous level history is recommended for most bus
node measurements, except when data buses are bein g
measured. Data buses are bidirectional and can be set to high-
impedance levels between valid data times. In this case, CRC
signatures with synchronous level history are the recommended
measurement combination.

* CRC signatures are useful when associated with stimulus
functions, since a unique signature results from a relatively
large number of signal transitions. For a given stimulus
program, two nodes that are tied will almost always have
the same signature, different from the known-good
signature.

®* Asynchronous level history is useful when trying to
determine whether a bus node is stuck. In this mode, the
probe or I/O module will report all of a node's three states
during the measurement period: logic 1, logic 0, or invalid
X (high-impedence). Asynchronous level history is very
useful for detecting glitches (short pulses) and is usually
used together with CRC signatures. It should not,
however, be used on data buses, which are bidirectional

4-245

Bus Buffer

and can be set to high impedance; since three-state
conditions are not predictable on such lines, they may
cause the measurement to fail. To measure data buses, use
synchronous level history with CRC signatures.

. Synchronous (clocked) level history is used to measure
signal levels at clock edges. This is useful for separation
of signals present at the specified clock edges from signals
present at other times. Clocked level history reports logic
states in the same way as asynchronous level history.
Measure data buses with this method, using the stable
clock to avoid the three-state condition,

® Transition count is used in place of CRC signatures when
there is no stable clock available.

® Frequency can be used to measure periodic bus cycles,
such as refresh, or to verify the frequency of system
clocks.

Address Buffers

When troubleshooting address buffers, the physical address map
of the UUT can be used to partition address buffer tests. For
example, a set of address lines may be part of the I/O memory
and associated with a particular buffer. Thus, a rampaddr
command over the specific 1/0 memory range may be sufficient
to verify proper operation of the buffer.

Other examples of address-bus partitions are:

* Mapped address lines are the microprocessor address lines
that are translated or mapped into another set of lines by a
fast RAM or VLSI component.

* System bus address lines are the address lines (usually
different from the microprocessor address lines) in the
system bus. These are usually buffered independently
from internal address lines.

¢ Internal (local) address lines are usually buffered
separately for local memory or other components.

4-246

Bus Buffer

Address lines may be latched as well as buffered. In latched
applications, the latch acts as a buffer and should therefore be
included in the Bus Buffer functional block.

Data Buffers

Many UUTs with 16- and 32-bit microprocessors and standard
buses have separate buffers for each group of eight bits with
three-state and direction-control lines that can be controlled
independently. There may also be buffers that allow swapping
or repositioning of bytes within a word, The rampdata
command, combined with CRC signatures, can be used to
diagnose data-bus-related errors in a similar way as rampaddy.

The rampdata command is a stimulus with the microprocessor as
the node source. To apply stimulus in the opposite direction,
read data from a component on the bus (such as RAM, ROM or
DMA). To do this, write a stimulus program to read data from
the component, and record signatures in the same way as for
rampdata. A ROM is a convenient component since, once
programmed, it contains a pseudo-random pattern which, over a
given address range, will generate meaningful signatures for the
individual data lines. There is usually a ROM associated with
each byte of the data bus. The read or rampaddr commands will
provide the addresses for generating the data to be read from the
ROM.

Conirol Buffers

Control lines may sometimes be generated by an LSI component
associated with the microprocessor. The LSI component is
included here in the bus buffer functional block because it
performs a function similar to the bus buffer. The testing and
troubleshooting of these components proceeds as though they
were simple buffers.

A faulty control buffer can cause the address-bus and data-bus
tests to fail. Control signals are tested by performing reads and

4-247

Bus Buffer

writes in all possible address spaces and all possible data
widths. Some control signals can be tested by the togglecontrol
command. The control buffers should be checked as the control
lines are stimulated.

Several types of control lines present problems. Here are some
general guidelines:

* Bus exchange signals are used to relinquish control of the
microprocessor bus to another master. Large systems may
have a bus arbitration circuit for granting the bus to a
requesting component. These circuits should probably be
treated separately from the bus buffer block.
Asynchronous access to the bus during tests should be
restricted and access should be limited to the specific
master acting as the stimulus source. The state of the bus-
request line can be determined with the measurement
techniques described above.

* Direction control signals control the direction of data flow
through the buffers and are usually connected directly to
inputs on the buffer ICs. These signals may be derived
from microprocessor status lines, LSI components, or
buffered versions of the microprocessor signal. There
may also be separate read and write signals for different
physical memory or I/O address spaces. The logic state
for each of these signals should be verified for the
appropriate bus cycle.

* Wait-state control signals such as READY on the 80286
microprocessor and ~DTACK on the 68000
microprocessor extend the bus cycle to accommodate
slower components. Stuck wait-state control lines will
cause bus-related functions to fail. If the pod is the
stimulus source, a stuck high (negated) condition on
Ready will cause a pod timeout. When the pod timeout
occurs, a message like "enabled line ~NREADY PIN 63
causes timeout" (when using an 80286 pad) will result.
The line can be disabled and testing can proceed. For
example, when a ROM requiring one wait state is the
stimulus source and the Ready or ~NDTACK signal is stuck
low (asserted), the bus cycles may be completed but bad

4-248

L

e~

Bus Buffer

data may be produced. As with other control lines,
asynchronous level history is useful in detecting stuck
control lines,

® Reset is a system-wide control signal which may be
included in the bus buffer functional block. A reset signal
stuck in-the asserted state will probably affect many tests.
Often, the only way to verify operation of a Reset signal
without cycling the power on the UUT is to externally
assert the signal using a switch, or overdriving device such
as the probe. The various nodes which distribute the reset
signal via buffers may be verified using the asynchronous
level history measurement.

Miscellaneous Lines

System clocks are sometimes associated with the control lines
for a particular bus. These clocks are often used to synchronize
external events with a bus cycle, they are often an integral part of
control-signal generation, and they can cause control-signal
faults if they are faulty,

Clocks asynchronous with the microprocessor clock are
sometimes used to run state machines associated with bus- and
buffer-control circuitry. Nodes that distribute these clocks via
buffers can be measured with the probe or I/O module
programmed to measure frequency. There is no stimulus
associated with these frequency measurements, even though a
stimulus program is used to set the mode on the measurement
device. The same is true for the program used to measure
asynchronous levels. These programs are referred to as
response-only stimulus programs. See the levels and Jfrequency
programs in Section 4.8.6 and 4.12.6.

Pull-up or pull-down resistors which establish static logic levels
on buses when there are no active outputs should also be tested.
Levels can be verified with asynchronous level history
measurements.

4-249

Bus Buffer

VLSI Components

Some VLSI components integrate a large amount of peripheral
microprocessor citcuitry associated with personal computer
designs, including the bus buffers. Operation of these
components can be quite complex. To simplify stimulus
program design, the buffer portion of these components, along
with the associated control signals, can be grouped in a separate
functional block from the other functions of the component.
Testing can then be done in a manner similar to that for discrete
buffers.

Connectors

Connectors are a part of many bus buffering functional blocks.
Whether these are test connectors, card-edge connectors or
sockets, they are components that can cause stuck, tied, or open
bus lines. Connectors should therefore be included in tests.

Bus Buffer Example 4.10.3.

4-250

The bus buffer in the Demo/Trainer UUT, Figure 4-96, uses an
82288 bus controller (U15) to decode status lines ~S0, ~S1,
M/~IO from the microprocessor and to generate command
signals for bus-cycle control. An "I" is appended to some
mnemonics, signifying internal (buffered) signals. For
example, data-bus lines DOO-D15 become internal lines ID00-
15. '

The address bus (A00-23) is buffered with latches U2, U16,
and U22, The rising edge of each ALE transition latches a new
address.

For the data bus (D00-15), the 82288 outputs control signals
DEN (data enable) and DT/~R (data transmit/receive). These
two signals control the state of data-bus transceivers U23 and
U3. For write cycles, both DEN and DT/~R are high. Forread
cycles, DEN is high and DT/~R is low.

Bus Buffer

Keystroke Functional Test 4.104.
Part A:

Use a 20-pin clip module on side A of I/O module 1 to test
data and control outputs from the microprocessor. Use the
SYNC, I/O MOD, and STIM keys with the commands
below for each of the following parts: U3, U23, U22, U15,
and U45. The correct measurement for each pin is shown in
the response table in Figure 4-96,

SYNC I/0 MOD 1 TO POD DATA
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP DATA (0 MASKED BY FF, ADDR 0
(ADDR OPTICN: I/0 BYTE)
RAMP DATA (0 MASKED BY FF00, ADDR 0
(ADDR OPTION: MEMORY WORD)
SHOW I/0 MOD 1 PIN <see response table> ...
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
You to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I/O MOD PIN" column of the
response table in Figure 4-96.

Part B:

Use a 20-pin clip module on side A of I/O module 1 tc test
data input to the microprocessor from the ROMs. Use the
SYNC, I/O MOD, and STIM keys with the commands
below for U3 and then for U23. The correct measurement
for each pin is shown in the response table in Figure 4-97,

4-251

Bus Buffer

4.252

SYNC I/0 MOD 1 TO POD DATA
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR E0000 MASKED BY 1FE
(ADDR OPTION: MEMORY WORD)
SHOW I/0 MOD 1 PIN <see response table>
.. CAPTURED RESPONSES

Part C:
1. Use a 20-pin clip module on side A of I/O module 1 to test
addresses and control outputs from the microprocessor.
2. Use the SETUP MENU key with the following commands
to disable Ready so all addresses can be generated:
SETUP POD ENABLE ~READY OFF
SETUP POD REPORT FORCING SIGNALS OFF
3. Use the SYNC, I/O MOD, and STIM keys with the

commands below for each of the following parts: U16, U2,
U22, U135, and U45. The correct measurement for each pin
is shown in response table #1 in Figure 4-98.

SYNC I/0 MOD 1 TO POD ADDR
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR (MASKED BY FFCO00
(ADDR OPTION: MEMORY WORD)
RAMP ADDR (0 MASKED BY 7FF
(ADDR QPTICON: I/0 BYTE)
SHOW I/O MOD 1 PIN <see response table>
. CAPTURED RESPONSES

4, Use the SYNC, I/O MOD, and STIM keys with the

commands below for part U15. The correct measurement
for each pin is shown in response table #2 in Figure 4-98.

SYNC I/0 MOD 1 TCO POD DATA

(Note that this is pod DATA sync)
ARM I/0 MOD 1 FOR CAPTURE USING SYNC
RAMP ADDR (MASKED BY FFC00

(ADDR OPTION: MEMCRY WORD)
RAMP ADDR (0 MASKED BY 7FF

P

Bus Buffer

(ADDR OPTION: I/0 BYTE)
SHOW I/0 MOD 1 PIN 8 CAPTURED RESPONSES
SHOW I/0 MOD 1 PIN 12 CAPTURED RESPONSES

5. After completing this functional test, use the SETUP MENU
key with the commands below to enable Ready and to
restore reporting of active forcing signals.

SETUP POD ENABLE READY ON
SETUP POD REPORT FORCING SIGNALS ON

Part D:

Use a 20-pin clip module on side A of I/O module 1 to test
control outputs during interrupt acknowledge by using the
pod program named FRC_INT. Use the SETUP MENU,
SYNC, and I/O MOD keys with the commands below for
U15 and then for U45. The correct measurement for each
pin is shown in the response table in Figure 4-99.

SETUP POD ENABLE ~READY ON

SETUP POD REPCQRT FORCING SIGNALS ON

SETUP POD INTA ACK ON

SYNC I/O MCD 1 TO POD INTA

ARM I/0O MOD 1 FOR CAPTURE USING SYNC

POD: FRC_INT

. (ADDR OPTION: MEMORY WORD)

SHOW I/0 MOD 1 PIN <see response table>
.. CAPTURED RESPONSES

4-253

Bus Buffer

Keystroke Functional Test (Part A) ;

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET U3 U1s
Uz23 u45
u22
RESPONSE TABLE
SIGNAL PART PiN 140 MOD PIN SIGNATURE
D00 U3-11 1 AAG1
IDo1 -t2 12 98DF
IDo2 -13 13 .8793
D03 -14 14 E618
D04 -15 15 F512
IDQS -16 16 4FFB
ID0§ -7 17 2600 ,
1007 M8 1B B259
IDO& u23-1 96EC
D09 a2z 12 7258
Mg -13 13 ESED
(3] -14 14 $BEO
D12 1§ 15 7TE2S
D13 -1 16 85 EA
D14 -17 17 77C7
iD15 -18 18 - SEBE
tCOD/INTA U22-5 5 FEAZ
IM/1C -6] BBE34
WRITE U15-9 9 FEAZ2
IWRITE -1 1 BB34
DEN - -16 16 45086
ALATCH vds-8 14 45986

T

4-254

Bus Buffer

LR

READY

CIACUIT

CLOCK aND RESET

+8v
02288 3 ALSi0
Ak o1/ AL 4 &
s kcen/atn pen| 8 et S Ls32
200,76 avel 9 ALE Us? 10y 2200 10} uas)8 ALaTen
18 kg woel 4 KT S jus 32
E]
:] REA|
2 ek FRoTh2 WHTTE
FERDY 1 FEADY WMHATC|32 TRERD
& IGatr,, TRITE
pe ToWC
Ecm‘_, THTaLa YA
I —_—
Tig -
ALE
p1/A Aan
jwre || LE
&l +BY
= L5374
_J::n I 3 ho sol2 me
/THTA 4 |y,
: g; 5 7 HTA SHI-6 DYNAMIC
BHE CRr S L 1,8 eay b= RAH -
yit] Th: oi s TERe TIMING
ALB Ay o 32 IAL
AL7 Tlos ooli% A
ANE 1Bloy gy 16 IaL
31 15_Ia1
1 be
uz2
Q; - AGDRESS "~
DECCDE
L5374
a 415
a by FYT] -
Fl 2 a2l A3
5 b FYE)
)V Em e Ron
A i4 s o ALY
A b o [TF]
Ye] i8], gol16 Taoa 1a06
13
3 BE
6 Lve | n
d-1 o] I1uTERRUPT -
6 CIRCUIT
107
[206 —
[205 1505
A0
faoz 3
H 4
A02 : - PARALLEL
260 15 1/0
11
1 OE T
us
-1
oss ALS248
Ay ppli8 _Iois - SERIAL
D34 a2 p2|37 1014 1/0
D33 A3 pal|i8 ¥0I3
[TE] as &a[15 dDIZ
[iT¥) a5 g5 |24 IDa
it a8 gg 131010
509, a7 B7 |22 _Ipow —_—
006 a8 Ba|bi IB0E g B
oIn YIDED
9 ——
_—cfuea AAM
. ALEZa8 -
o 181007
Al |
[i oe a7 1008
563 23 p3iiE 1065 1068
004 P T — VIDEO
003 a3 psfi4 1003 SHA-2 ="
CH PEREC) P o a— CONTRGL
004 a7 ms7[32 IDG3] 13
D00 ap epfii Toop |
LI 1 o
15
Eus

Figure 4-96: Bus Buffer Functional Test (Part A)

4-255

Bus Buffer.

Keystroke Functional Test (Part B)

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET u3
u23
RESPONSE TABLE
SIGNAL PART PIN 170 MOD PIN SIGNATURE
Doo U39 9 450D
Dot -8 8 CF83
D02 a 7 BD79
D03 -8 6 aaTe
004 5 5 86F3
005 -4 4 FABS
D06 -3 3 §34E
Bo7 -2 2 8D0A
508 u23.9 Y 73609
509 . -8 8 ACB4
D10 a 7 5088
ot -6 6 5848
D12 -5 5 06EF
D13 -4 4 00AD
D14 -3 3 6BFO
D15 -2 2 52EE

AT

4-256

Bus Buffer

READY

CIRCULT

M

€
EN/AER DEN] 16

S aLg
ALE
5T uLep A NG

——— CLOCK AND RESET

3 ALE1D

2504 4 umen 8
g (] [e L532
10 ALSDO 10| Uas

9 Jus B

?15
o g

ALATCH

4
:I
B
By

g

543-6
/18 13 -6 5y

RaM

DYNAMIC
HAM —ind
TIHING

ADORESS
OECDOE

15374
A15 3 ho ool 2 Ia1s
hid 2 1 gl 5 la1a
213 7 he ool B Tai3
A12 & g oAl 8 32 ROM o
A1l 13|, gale Tai
~10 S b Gu[A5 10
A48 37 e gl t6_IA0T
A0 38y gp[19 IA0B IA0E
11
1 e .
u2 \
a1 INTERRUPT [
L5374 . CIRCUIY
A7 3_bo o ABT
AGE Ty o 205 .
A05 7 |na g2l 6 _IAOS 1405 .
a4 4 |y a 04
FYE) 30y, g4 12_Ia03
A0 ; = o 02 PARALLEL
AQ1 AQY
0ne o5
AGD £l o 400 /0
1
_—‘wulb
- 2y
I
AL5245 2n
015 RPT) t_ o5 1013 SEAIAL
014 014 1614
a2 gzl 1034 4. . | I/0
013 A3 pafl6_IO1 _ID134 | /
o2 A4 Ba 101, Iz, | —
[T} 15 Bs 101 To34 7
030 3 704 T0L0
A5 85
008 »7 87 [12_I0D 1509 5] -
006 A8 @a |13 1008 11008 ;5
YIDED
oIA - 21
E3ES sH3-8 AAM
e 8,8 47K
0o7
[T
005 D05
%; !E VIDED
LERS
002 pHa-2 CONTROL
003 15
008

Figure 4-97: Bus Buffer Functional Test (Part B)

4-257

Bus Buffer

Keystroke Functional Test (Part C)

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET ute uis
U2 u4s
u22
RESPONSE TABLE #1
SIGNAL PART PIN 1/0 MOD PIN SIGNATURE ASYNC LEVEL
1A00 U16-19 19 D62F
1401 -16 16 B21A
1402 -15 15 DADY
1A03 -12 12 1024
1A04 -8 9 E030
1A05 -8 8 4442
1A06 -5 5 4F2A
1A07 -2 2 0772
IA08 u2-19 19 9635
IAD9 -16 16 1734
IA10 a5 * 15 41BA
A1 .12 12 455 A
1A12 -9 % BEED
IA13 -8 6 1868
1A14 -5 5 DEES
_IA15 2 2 cz26s
IA16 U22-19 19 FSAT
1A17 -16 18 9198
IA18 15 T 25E4
Al9 -12 2 4AT S
IBHE ' ¥ 2 ACS5F
ALE\ Ui5-5 5 2A42 10
INTA -13 5 2A42 1
DT/R a7 17 gD92 10
ALATCH v4s-8 14 B7D0 10
RESPONSE TABLE #2 '
SIGNAL PART PIN 170 MOD PIN
I
READ U158 R ¥
IREAD a2 ”

4-258

T

Bus Buffer

REAQY

CIRCUTT

LK CLOCK AKD RESET

+5v

82288

€n. 0T/
KEN/RER DEN

DBYRAMIC

5¥3-6 RaM
WIE 11— B
- ——— *5¥Y
e B Yo TIMING

9 _1AiB
o rid)
I ADORESS
0ECODE
L8374
A5 3 a 5
aLe 3 _
1 {11
PYEy S on o
Y] > o ROM —a
YY) 3hs ogdli®
ALD 2lns as 12
ADS 7 as[d5_1A09
A08 12, gy|49 1ASE lagn
)
1 e

INTERRUPT
CIRCUIT

PARALLEL
/0

SEATAL
/0

YIDED -ul
RaM i

YIOED
CONTROL

. : Figure 4-98: Bus Buffer Functional Test (Part C)

_ 4-259

Bus Buffer

Keystroke Functional Test (Part D)

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET w5
[VEL)
uz22
RESPONSE TABLE
SIGNAL PART PIN 1/0 MOD PIN SIGNATURE
ALE u15-5 5 0000
READ -8 8 0001
WRITE -9 k] 0001
IWRITE -1 11 0601
{READ -12 12 0001
INTA -13 13 0000
DT/R -17 17 000
ALATGH as-3 14 0001
ICOD/INTA uz22-5 5 0000

4-260

Bus Buffer

e

AEADY

£IAcuIT

__ baage

14 Har ALS04
5 CENL DT/ g

ICEN/ATH DEN|LE

CLOCK AND RESET

ALATECH

READY.
= RAM
wIg
Ed
330 NTA oo 2
1 a
7_5 3 ol o 5 LS8 DYNAMIC
o= ' usg:/ ECTS cHE TR R "
ALH (3
FYE 7
i s
1]
rql’ {oE
vaa
ey AODRESS >
DECODE
Le3re
a go2_1x15
A by gy 5 JAid
7 ba gz 6 TA13
8 | 9 "1a12 -
Tahe odiZ 1An Row
A 1abm gl 5 TAID
NS oE| 16 198
& :T p? o7| 19_LA08 1A0H
15E
vz A
Pt
L5374]
AQ7 3 aol_Z 07 i
ADS 4 by ol = (]
ﬁgﬁ 2 asl 8 05 1405
Fii 00 S ios
A0 s 3; :5 ig:
LT Thy welis [l PARALLEL
ADO 8y gyl 19 _Taoo 170
i1
1
e
v
I
g:z IDs SERIAL
= i i
1012y
g:; 10115
o G190y
[100
©08 100 1
vinen
8w3-3 z i
5, 9 47K RAH
007
[T
[T
] 1003
[F] F VIDEO
o2 -2 CONTROL
001
o4 It}

Figure 4-99: Bus Buffer Functional Test (Part D)

4-261

Bus Buffer

Programmed Functional Test 4.10.5.

4-262

The tst_buffer program is the programmed functional test for the
Bus Buffer functional block. The gfi rest command is used to
run all stimulus programs defined for the parts tested and to
compare the results against known-good responses stored in the
response files. If all results are good, the gfi test passes;
otherwise the gfi test fails.

The tst_buffer program performs a gfi test on address buffer
U16. If the gfi test fails, a program called abort_test is executed
using a variable containing the part and pin number that was
tested by the gfi test command. A listing for the abort test
program is included in Appendix C.

The abort_test program uses the gfi accuse command to see if an
accusation exists. If there is no accusation, a gfi hint containing
the part number and pin number is generated and the program is
terminated (the gfi hint gives GFI a place to start
troubleshooting). If an accusation does exist, the abort_test
program displays the accusation and the program is terminated.

The gfi test (and execution of abort_test if the gfi test fails) is
repeated for the other two address buffers U2 and U22 and then
for the data bus buffers U3 and U23.

program tst_buffer

FUNCTIONAL TEST of the BUS BUFFER functiocnal block.

1
1
This program tests the BUS BUFFER functicnal block of the !
Demo/Tralner. The gfl test command and I/0 module are used to clip !
over the buffers and perform the test, !
I
1
1
1
1
1

TEST PROGRAMS CALLED:
aboxt_test (ref-pin) If gfi has an accusatlion
display the accusation.else
create a gfi hint for the

program (GFI begins trouble-
sheot ing}.

P

;

Bus Buifer

print "\nlTESTING BUS BUFFER Circuit®
I Test ADDRESS BUS
if gfi test "Ul6-1" fails then abort test (“Ul6-1"}
if gfi test "U2-1" fails then abert test ("0U2-1")
if gfi test "U22-1" falls then abort_test ("U22-1")
! Test DATA BUS

if gfi test "U3-1" fails then abort test{"U3-1")
if gfi test "U23-1" fails then abort_test ("U23-1")

print "BUS BUFFER TREST PASSES"
end program

Stimulus Programs and Responses 4.10.6.

Figure 4-100 is the stimulus program planning diagram for the
Bus Buffer functional block.

The stimulus programs addr_out, ctrl_outl, ctri_our2, ctrl out3,

and data_out exercise outputs going outward from the
microprocessor. The rom! data stimulus program stimulates
the outputs of the data buffers that are connected to the -
MiCTOProcessor. '

4-263

Bus Buffer

Stimulus Program Planning

PROGRAM: ADDR_OUT

EXERGISES ALL ADDRESS LINES FROM THE
MICROPROCESSOR

MEASUREMENT AT:

U16-19,16,1512,865.2
U2-19,16,15,129,6,5.2
J22-19,16,15,12,9

PROGRAM: DATA.NT

EXERCISES ALL mnwnm
THE MIGROPROCESSOR:

MEASUREMENT AT:

UG-, 121814151847
uza-u.ﬂ,is.u.m.w.

4-264

P

Bus Buffer

80286
MICROFROCESSOA

READY
CIRCUIT

—=— C(LOCK AND AESET

ALATCH
RaH
OYNAMIC
RAAM]
TIHING

ADDRESS
DECODE

INTERRUPT
CIACUIT

PARALLEL
I/0

w5y
82268
tilem oir ALS0a
15 Ecuneu [N EL 9
us?
REAG
WATTE
RERDY EAD
wAT
TnTE
W/ T8
50
51
CO0/THTA
_ swi-e
BHE /76 11~ B sy
419
A8
as7
aiE
ash
an
Al
3
0
0
202
[ac 1408
s
SHa-t
AQZ? 16
AQE
ADS TADS
AD4
203
x02
401
400
aLS2a3
Dis 15
Al Ba1
I Az B2 14
o3 a3 B3 IE]
b1 A B 12
011 AS as 11
010 6 Be 10
o8 A7 o7 E]
o P L]
olr
19
uz3
aLg245
Bo7 TN 7
06 sz az B8
005 a3 83 s Iogs
%; L] A4 Ba I]
A5 BS El SKa-2
LTH A5 BB 2
D01 17 B2 i 18
099 M) a8 L]
DIA
19,
u3

SEATAL
170

VIDED
RAM

VIDEG
CONTROL

Figure 4-100: Bus Buffer Stimulus Program Planning

4-265

Bus Buffer

program ctrl out2

IR N S S N RN AR N N RN

t
STIMULUS PROGRAM for bus controller, Ul5 & uP ctrl

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the cutputs in the UUT that are stimulated by the stimulus program.

1

1

I

|

1

1

|
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit werking properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the 1
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus contreller !
is out of synchronizatien, The recover{} program is executed to !
resynchronize the bus controller and the pod. !
1

1

TEST PROGRAMS CALLED:
recover [§] The B0286 microprocessor has al
bus controller that is totally!
separate from the pod., In 1
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus contreller, 1

GRAPHICS PROGRAMS CALLED:
{none}

1
1
1
1
Local Varlables Modified: H
devname Measurement device !
H
t
r
I
1
1

lo_byte 1/0 BYTE address space
mem_word MEMORY WORD address space

Global Variables Modified:
recover_times Reset to Zero

! Main Declarations 1
IR N e N R N S N R AR AR

declare global numerlic recover times

{continued on the next page)

Figure 4-101: Stimulus Program (ctrl_out2)

4-266

T

Bus Buffer

handle ped_timeout_enabled line
recover{)

end handle

handle pod_timeout_ recovered
recover(}

end handle

handle pod_timeout_no_clk

end handle

recover times =0
! Let GFI determine the measurement device,

if {gfi contrel) = “"yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program CTRL_QUT2"

! Set addressing mode and setup measurement device.

podsetup ‘enable ~ready' "off"

podsetup 'report power' "off"

podsetup 'report forcing' “off"

podsetup ‘report intr' “offv

podsetup 'report address' "off"

pedsetup 'report data' “off*

podsetup 'report control' "off"

io byte = getspace space "1/0", size "byte"
mem word = getspace space "memory", size "word"
reset device devname

sync device devname,mode "pod"

sync device “/pod", mode “data®

old cal = getoffset device devname

setoffset device devname, offset (1000000 - 70)

! Present stimulus to UUT,

arm device devname ! start response capture.
setspace {mem_word)
rampaddr addr SEQ009, mask $1E
rampdata addr $50000, data 0, mask $F
setspace {lo_byte)
rampaddr addr 0, mask 3$5F00
rampdata addr $2000, data O, mask $F
readout device devname ! End response capture,

setoffset device devname, offset old cal
podsetup 'enable ~ready' "on"
end program

Figure 4-101: Stimulus Program (ctrl_out2) - continued

4-267

Bus Buffer-

STIMULUS PROGRAM NAME:

DESCRIPTION:

Node
signal Src

U155
Ul5-8
Ul15-8
Ul15-2
U15-9
Ui5-11
ULr5-11
u1s-12
U15-12
U15-13
U15-17
Us-8
U45-8
Us6-6
U56~6

4-268

CTRL_OUT2

Tearned
With

1/0 MODULE
PROBE
I1/0 MODULE
PRCBE
I1/0 MODULE
PROBE
1/0 MODULE
PROBE
I1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE
1/0 MCDULE

Response
Async Clk
IVL 1IVL

el Rl e e e S Ay

[a- s I o B w B)

COoOOoo 000 C0O

0

SIZE: 261 BYTES

Data ——m—=we—— o
Counter Priority
Mode Counter Range Pin

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-102: Response File {ctrl_out2)

Bus Buffer

program ¢trl out3

STIMULUS PROGRAM for bus controller, U15 & uP ctrl lines.

Stimulus programs and response flles are used by GFI to backtrace
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program,

1 1
] 1
1]
t I
1 1
1 1
t 1
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with 1
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input. !
! to the pod, then perform the stimulus, then-re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Twe fault !
! handlers trap pod timecut conditions that indicate tLhe bus controller !
! 1s out of synchrenization. The recover {} program is executed to !
! resynchronize the bus controller and the ped. f
1 1
1

! TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!
bus contreller that is totally!

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recocver program |

resynchronizes the pod and the!

bus controller, !

1

1

frc_int [§] A Pod program to Force Interrupt!
Ack. t

GRAPHICS PROGRAMS CALLED:
{none)

1
1
!
!
Local Varlables Modified: !
devname Measurement device !
]
!
]
1
|

io byte 1/0 BYTE address space
mem_word MEMORY WORD address space

Global Varlables Modified:
recover_times Reset to Zero |

{continued on the next page)

Figure 4-103: Stimulus Prégram {ctrl_out3)

4-269

Bus Buffer

| Let GFI determine the measurement device.

if {gfi control) = "yes" then
devname = gfi device

else
devname = clip ref "U15"

end if

print "Stimuwlus Program CTRL_OUT3"

! Set addressing mode and setup measurement device.

io_byte = getspace space "ifo", slze "byte"
mem_word = getspace space "memory", size "word"
podsetup 'report power' "off"

podsetup 'report forcing' "off*

podsetup 'report intr' "off"

podsetup 'report address' "off®

podsetup 'report data' "off"

podsetup 'report contrel' "off"

reset device devname

podsetup 'intr_ack on'

sync device "/pod", mode "inta"

sync device devname, mode "pod"

! Present stimulus to UUT.

axrm device devname ! Start response capture.
execute fro ink() ! Force Interrupt Ack.
readout device devname ! End response capture,

end program

Figure 4-103; Stimulus Program (ctrl_out3) - continued

4-270

Bus Buffer

STIMULUS PROGRAM NAME: CTRL OUT3
DESCRIPTION: SIZE: 282 BYTES

——————————————————— Response Data

Node Learned Async Clk Counter Priority
Signal Ssrc With SIG VL LVL Mode Counter Range Pin
U15=-5 I/0 MODULE 0000 10 TRANS
U15-8 PROBE 0001 10 TRANS
ui1s5-8 I/0 MODULE 0001 10 TRANS
u15-9 PROBE 0001 1 TRANS
U15-9 I1/0 MODULE 0001 1 TRANS
U15-11 PROBE 0001 1 TRANS
Ul15-11 I/0 MODULE 0001 1 TRANS
Ul5-12 PROBE 0002 1 TRANS
U15-12 I/0 MODULE 0001 1 TRANS
U15-13 I/0 MODULE 0000 190 TRANS
U15-17 I/0 MODULE 0000 10 TRANS
U4-3 I/0 MODULE 0000 10 TRANS
Us-8 I/0 MODULE 0001 10 TRANS
U45-8 I/0 MODULE 0001 10 TRANS
U56-6 PROBE 0000 10 TRANS
Usé-6 I/0 MODULE 0000 10 TRANS
Ul5-4 I1/0 MODULE Q000 10 TRANS

Figure 4-104: Response File (ctri_out3)

4-271

Bus Buffer

Summary of Complete Solution for Bus Buffer

4-272

4.10.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Bus Buffer functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in

this manual for each file.

UUT DIRECTORY
{Complete File Set for Bus Buffer)
Programs (PROGRAM):
TST_BUFFER Functional test
ADDR_OUT Stimulus Program
DATA_OUT Stimulus Program
CTRL_OUT1 Stimulus Program
CTRL_OUT2 Stimulus Program
CTRL_OUT3 Stimulus Program
ROMI_DATA Stimulys Program
Stirnulus Program Responses (RESPONSE):
ADDR_OUT
DATA_OUT
CTRL_QUT1
CTRL_QUT2
CTRL_OUT3
ROMI1_DATA
Node List (NODE):
NODELIST
Text Files (TEXT):
Reference Designator List (REF):
REFLIST
Compiled Database (DATABASE):
GFIDATA

Section 4.10.5
Figure 4-4
Figure 4-6
Figure 4-8
Figure 4-101
Figure 4-103
Figure 4-16

Figure 4-5
Figure 4-7
Figure 4-9
Figure 4-102
Figure 4-104
Figurc 4-17

Appendix B

Appendix A

Compiled by the 9100A

Address Decode

ADDRESS DECODE FUNCTIONAL BLOCK 4.11.

Introduction to Address Decode Circuits 4.11.1.

The Address Decode circyit of a UUT typically consists of the
decoder ICs, an address path from the microprocessor to the
decoder ICs, and the decoder outputs that select the peripheral
devices on the UUT, Figure 4-105 shows such a circuit,

Many microprocessor Systems confain an address latch or a
buffer between the microprocessor and the address decoder ICs,
The decoder ICs generally contain combinatorial logic that
asserts one and only one of the decoder outputs for a given
range of addresses. The address decoder typically has one or
more enable input pins. The signals feeding these pins may be
address lines or outputs from other decoders.

block.

Considerations for Testing and
Troubleshooting 4.11.2.

Use the 9100A/9105A's I/O module to test address decoding

circuits. The general procedure is to characterize all decoder ICs

and paths in the address decoding circuit of a known-good

UUT, and then perform the Same procedures on the suspect
UT, comparing results.

For each decoder IC in the circuit, the followin g test procedure
can be used from the operator's keypad:

1. Clip the /O module onto the IC.

2. Synchronize and arm the 1/O module (see the
Technical User's Manual for this procedure).

4-273

Address Decode

4-274

Micro-
processor

—»
——NJ Address [,
—/| Decoder | o pocnder
—" Qutputs
|
Enable —
—»
—'\ Address |
—] Decoder | pecoder
[—* Quiputs
—
MEMIO
Enable L
N
FidessBus AgS;fe;B Buffered Address Bus

Figure 4-105; Typical Address Decode Functional Block

P

P

Address Decode

3. Run a stimulus procedure to make each output go
high and low.

4. Use the SHOW I/O MOD command on the I/O MOD
key (operator's keypad) to observe signatures on
each pin of the IC.

5. Write down the signatures gathered from each pin on
the IC, both inputs and outputs.

Since decoder outputs are typically asserted only over a specific
address range, your stimulus procedure should also perform its
reads and writes within that range for each decoder output. For
example, consider a decoder with eight outputs, as follows:

Decoder Address
OCutput Range (hex)
~Y(0 0-7FF

~¥1 800-FFF
~Y2 1000-17FF
~Y3 1800-2FFF
~Y4 3000-37FF
~Y5 3800-3FFF
~Y6 4000-47FF
~Y7 4800-4FFF

A stimulus procedure to test the first output, ~Y0, might consist
of the following:

READ ADDR 0
READ ADDR 7FF

This will test the end points of the valid address ran ge for ~Y0,
to verify that ~Y0 is asserted (low) within that range. The same
pair of reads within the valid address range of ~Y1 will test that
~Y0 is not asserted (high) outside the valid address range of
~Y0. You can use this strategy to test all of the decoder outputs
with only 16 read operations.

4-275

Address Decode

If the outputs of a decoder IC are bad and the inputs are good,
suspect the IC and/or suspect shorts on the output signal paths.
If the decoder inputs are bad as well, trace back toward the
microprocessor. If your UUT has address latches or buffers,
perform a similar test on them,

Watch for decoder ICs that are enabled only during reads or
writes. Use the appropriate stimulus command (read or write)
on these ICs.

Address Decode Circuit Example 4.11.3.

4-276

Figure 4-106 shows the address decode circuit (U8, U9, and
U21) in the Demo/Trainer UUT. It selects the memory or I/O
component being addressed. Some of the buffered address lines
and bus controller lines are used to enable the following decoded
address output lines (all have active low outputs):

Address
Range Circuit
Cutput Enabled Enabled

RAMO 00000-0FFFF 64K byte dynamic RAM

RAM1 10000-1FFFF 64K byte dynamic RAM

VRAM 20000-2FFFF Video RAM

IPOLL 30000-3FFFF Interrupt polling

SPARE! 40000-4FFFF (decode complete signal)

SPARE2 50000-5FFFF (decode complete signal)

ROMO EOOO0-EFFFF 64K byte ROM, U29 and U30

ROM1 FOO00-FFFFF 64K byte ROM, U27 and U28

VIDSLT 00000-01FFE Video controller

I/OSLT 02000-03FFE ~ RS-232 port and the ASCII
keyboard

PPISLT 04000-05FFE Outputs to seven-segment
displays and inputs from test
switches S1 through S4

Address Decode

Keystroke Functional Test 4.11.4.

1.

Use a 16-pin clip module on side A of I/O module 1 to test
the decoded signals.

Use the SETUP MENU key with the commands below:

SETUP POD ENABLE ~READY OFF
SETUP POD REPORT FORCING SIGNALS OFF

Use the SYNC, IO MOD, and STIM keys with the
commands below for each of the following parts: U8, U9
and U21. The correct measurements for each pin are shown
in the response table in Figure 4-106.

SYNC I/C MOD 1 TO POD DATA
ARM I/0 MCD 1 FOR CAPTURE USING SYNC
RAMP ADDR 0 MASKED BY FQ000
{ADDR OPTION: MEMORY WORD)
RAMP ADDPR (MASKED BY F000
(ADDR OPTION: I/0 BYTE)
SHOW I/O0 MOD 1 PIN <see response table> .
. CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
You to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "I!/0 MOD PIN" column of the
response table in Figure 4-106.

4.277

Address Decode

4. After completing the test, use the SETUP MENU key with
the commands below to restore the settings for POD
ENABLE and POD REPORT:

SETUP POD ENABLE READY ON
SETUP POD REPORT FORCING SIGNALS ON

4-278

T

Address Decode

(This page is intentionally blank.)

4-279

Address Decode

Keystroke Functional Test

CONNECTION TABLE

TEST ACGESS SOCKET us
us
vzt
RESPONSE TABLE
SIGNAL PART PIN 170 MOD PIN SIGNATURE
RAMO ue-15 19 BCAS
RAMI Us-14 18 8BAD
VRAM Us-13 17 902F
IPOLL uB-12 16 6DEE
SPARE1 ue-11 16 930E
SPARE2 UB-10 14 6CTE
ROMO us-9 13 ac7e
ROM1 ua7 7 3B4¢C
VIDSLT u21-15 19 FSBE
1/O8LT u21-14 18 D92A
PPISLT u21-13 17 354F

4-280

P

Address Decode

—_—m——

RERDY READY
CIRCUIT
CLOCK
& RESET
FEADY
BUS
BUFFER
ALS04
Y 2 +5V
Lsii2 s
uig
3 u a -3
1 u7
ALE e J 5
N ?‘5 DYNAMIC
3 4
K RAM RAMADY
DISASLE TIMING
841-3 l:4 ALS13g p38 BAWT 00000-OFFFF
2218 2 5 ?f%é ﬁa_*__*,_ FAWI __ 10000-3FFFF ——
"’;ﬁ 8 lgy wahi3 VAR 20000-gFFFF | VIOED _—
Al 3 ~ — -
17 25 S|’ IPOLL soogo-areer CONTROL
AlG 1], vEpil BPARET 40000-4FFFF ’
v5 10 BARET 50000-SFFFF BEL
Y7 ——
INTERRUPT TRYAGT
ALS04 CIACUIT
Iasg 3 44 t
us7? » BPAREL
Tf.?ﬁ anes_ |
AL7
s FOHOAGY
ADM ARIADY
755 T -
ALS136 0000-3FFE
Ia0 ’—‘_me‘*—
::/?m ; % %AMME SERIAL
CoD/TRYR a1 yzpid PPYMY coog-oFFe 1/0
(141 ¢ Viliz nc j _J
T 8 Yalii e (2 cn i
413 * % 10 NG
V7., 8 ne PARALLEL
vzy b7 NG ™ 1/0

Figure 4-106: Address Decode Functional Test

4-281

Address Decode

Programmed Functional Test 4.11.5.

4-282

The tst_decode program is the programmed functional test for
the Address Decode functional block. This program checks the
three address decode ICs (U8, U9 and U21) using the gfi test
command, If the gfi test command fails, the abort_test program
is executed and GFI troubleshooting begins. (See the Bus
Buffer functional block for a discussion of the abort_test

program).
program tst_deccde

! FUNCTIONAL TEST of the DECCDE functional block. !

1 1
This program tests the DECODE functional block of the Demo/Trainer. !
The gfi test command and I/0 module are used to ¢lip over the decoders!
and perform the test,

1
1
1
i !
{ TEST PROGRAMS CALLED: 1
1 abort_test (ref-pin} If gfi has an accusation !
! display the accusation else !
1 create a gfi hint for the t
! ref-pin and terminate the test!
! program {GFI begins trouble- !
I shoot ing}. !
AR R RN AN RN R S R R R R R R RN R R R R R R R A R RN R R A R AnY |

declare
global string decode_checked = "" | Record this test was run
end declare

If decode chetked <> "yes" then
decode_checked = "yes"
print "\nl\nlTESTING ADDRESS DECODE"

podsetup ‘enable ~ready' "off®
podsetup ‘report forcing' “off"

if gfi test "U8-15" falls then abort test("UB-13")
if gfi test "U9-7" falls then abort_test ("U9-7")
1f gfi test “U2i-15" fails then abort_test ("U21-15"}

print "ADDRESS DECODE TEST PASSES"
end if
end program

P

Address Decode

Stimulus Programs and Responses 4.11.6.

Figure 4-107 is the stimulus program planning diagram for the
Address Decode functional block. The decode stimulus program
performs an access at each decoded address space. The addr_out
stimulus program exercises the address lines. The reser Tow
stimulus program checks the reset signal when the test operator
presses the Demo/Trainer UUT RESET pushbutton.

4-283

Address Decode

Stimulus Program Planning

PROGRAM: DECODE PROGRAM: RESET_LOW

PERFORMS AN AGCESS FOR EACH DECODED PROMPTS THE OPERATOR TO PRESS THE RESET
BLOCK KEY AND THEN CHECKS FOR A LOW LEVEL
MEASUREMENT AT: MEASUREMENT AT:

UB-15,14,13,#2,11,10 u19-4

ue-g,7

U21-15,1413

U7-5

u19-24

PROGRAM: ADDR..OUT

EXERCISES ALL ADDRESS LINES FROM THE
MIGROPROCESSOR

MEASUREMENT AT:

us7-4

4-284

P

Address Decode

READY READY
CIACUIT

CLOCK

RESET
& RESET

cLK |

AERGY 80286
I | MICROPROCESSOR

|

BUS
BUFFER

3 [, 5 g}s _ OISABLE

ALE 2 Ik gpe_nc

ALSO04 T
fis DYNAMIC -
AAM RAMADY _

TIMING

DISABLE

SH1-3 a ALS138 .5 FAWO __ 00D0Q-QFFFF
5
B
3
2
i

E3A V0|44 famg 10000~ 1FFFF
1 Yz L3 VARA __20000-2FFFF VIOEQ VRAFADY

CONTROL

J!f

¥3 |12 TPOLL _30000~3FFFF

6
c

8 Yilyy SOAMET a0000-4FFFF
A Y5 p———

& |10 _SPAREE

A0000-8FFFF ViosLT

INTERRUPT IRTROY
CIRCUIT

AL
Ia18 3 4 4 ALSI3D .5 e

BPARE S
EPAREZ

W/ TO
A1

]

c
A7 B Vil .
[TA16 ’

HAOMORDY

g il At

AOM ROMIADY
v7 ROHD E0QO0-EFFFF - AOMIOY
v us 7 AORL____FOOOO-FFFFF ' DT

200 s ALS138 .4 VIOELT go00-IFFE
e B 1T) 14 T/GELT 2000-3FFE SERIAL

PPIBLY _ 4000-BFFE 1/0

¥1
%

[12 vc
Talas we >

10 &
7l o ne PARALLEL
vas 7 NG 1/0

Figure 4-107: Address Decode Stimulus Program Planning

4.-285

Address Decode

program decode

STIMULUS PROGRAM for address decoders U8, U9, and U21.

in the kernel area of the UUT.

TEST PROGRAMS CALLED:
recover {}

! GRAPHICS PROGRAMS CALLED:
{ncne}

ILocal Variables Modified:
devname

Global Variables Modified:
recover_times

Stimulus programs and respense files are used by GFI to backtrace

from a failing ncde. The stimulus program must c¢reate repeatable UUT !
activity and the response file centalns the known-gcod responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
I
!
I
1
1
This stimulus program is one of the programs which creates activity !
These programs create activity with !
or without the ready circuit werking properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprecessor has a separate bus controller; !
for thls reason, disabling ready and performing stimulus can get the !
bus centroller out of synchronization with the ped, Two fault !
handlers trap ped timeout conditions that indicate the bus controller !
is out of synchronlzation. The recover({) program is executed to 1
resynchronize the bus controller and the pod. 1

r

The 80286 microprocessor has a!
bus contreller that is totally!
separate from the pod. In !
scme cases the pod can get out!
of sync with the bus control~ !
ler. The recover program !
resynchronizes the pod and the!
bus contreller.

Measurement device

Reset to Zero

handle pod_timecut_enabled_iine
recover (}
end handle

{continued on the next page)

Figure 4-108; Stimulus Program {deccde)

4-286

—

Address Decode

handle pod_timeout_recovered
recover ()
end handle

recover times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end Lf

print "Stimulus Program DECODE"

! Set addreseing mode and setup measurement device.

podsetup 'enable ~ready' “off"

podsetup 'report power' "off"

podsetup *report forcing* "off"

podsetup ‘report inktr' "off"

podsetup 'report address' "off"

podsetup '‘report data' "offn

podsetup 'report control' "off"

io_byte = getspace space "i/o", size “byte”
mem_wWord = getspace space "memory", size “"word"
reset. device devhame

sync devlice devname, mode "pod"

sync device "/pod", mode "data"

old_cal = getoffset device devname

setoffset device devname, offset (1000000 — 56}

! Present stimulus to UUT,

arm device devname ! Start response capture.
setspace {mem_word}
read addr 0 ! RAMO
read addr $10000 ! RAM1
write addr $20000, data 0 ! VRAM (write only}
read addr 330000 ! IPOLL
read addr $40000 ! SPAREL
read addr $50000 ! SPARE2
read addr $E0000 ! ROMO
read addr $F0000 ! ROM1
setspace (io_byte}
read addr 0 ! VIDSLT
read addr $2000 ! 1/0SLT
read addr $4000 ! PPISLT

readeut device devname I End response capture.
setoffset device devname, offset old_cal

podsetup ‘enable ~ready' "on"
end program

Figure 4-108: Stimulus Program (decode) - continued

4-287

Address Decode

STIMULUS PROGRAM NAME: DECODE

DESCRIPTION: SIZE: 392 BYTES
——————————————————— Response Data !
Node Learned Async Clk Counter Priority)

Signal Src With SIG IVL LV, Mode Counter Range Pin

Ug-15 I/0 MODULE 03F9% 10 TRANS

Ug-14 I/0 MODULE O05F6 10 TRANS

ug-13 1/0 MODULE O06F1 10 TRANS

ug-12 I/0 MODULE 0772 10 TRANS

us-11 I/0 MCDULE O07B3 10 TRANS

ug-10 I/0 MCDULE 07D3 10 TRANS

ugs-3g I/0 MODULE O07E3 10 TRANS

ug-7 I/0 MODULE 07FB 10 TRANS

U21-15 PRCBE 07F7 10 TRANS

u21-15 I/C MODULE OQ7F7 10 TRANS

U21-14 PROBE 07F1 10 TRANS

U21-14 I/0 MODULE ¢7F1 19 TRANS

u21-13 I/0 MODULE OQ7F2 10 TRANS

u7-5 I/0 MODULE 000C 10 TRANS

U19-2 I/0 MODULE 0675 10 TRANS

U19-4 I/0 MODULE O7F3 1 TRANS

U45=-3 I/0 MODULE O7FB 10 TRANS

U45-6 1/0 MODULE O07E3 10 TRANS

05-11 I/0 MODULE O07F3 1 TRANS

U4-3 I1/0 MODULE 07F3 1 TRANS

U57-2 I/0 MODULE 0637 10 TRANS

057-6 I/0 MODULE 00681 10 TRANS s i

|
1"'
Figure 4-109: Response File (decode) N

4-288

e

Address Decode

Summary of Complete Solution for
Address Decode 4.11.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Address Decode functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file,

UUT DIRECTORY
(Compleie File Set for Address Decode)

Programs (PROGRAM):

TST_DECODE Functional Test Section 4.11.5

DECODE Stimulus Program Figure 4-108

ADDR_OUT Stimulus Program Figure 4-4

RESET_LOW Stimulus Program Figare 4-115
Stimulus Program Responses (RESPONSE):

DECODE Figure 4-109

ADDR_OUT Figure 4-5

RESET_LOW Figure 4-114
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE): _

GFIDATA Compiled by the 9100A

4-289

Address Decode

4-290

(This page is intentionally blank.)

T

Clock and Reset

CLOCK AND RESET FUNCTIONAL BLOCK 4.12.

Introduction to Clock and Reset Circuits _ 4.12.1.

Microprocessor-system clock circuits may generate single
periodic digital signals or multiple signals representing different
phases of a single time base. Both types of clocks may be
present in a UUT. Clock circuits typically include circuitry for
buffering and/or dividing clock sources.

Reset circuits range in complexity from simple resistor-capacitor
networks to several IC's. Often a single switch, IC, gate, or
monostable multivibrator serves as the reset circuit. Some
UUTs have watchdog timers which automatically reset the UUT
if the microprocessor gets lost in a program.

Considerations for Testing and
Troubleshooting A412.2.

Clocks

When clocks circuits fail, most other functional blocks will also
fail. Clock problems are usually associated with only a few
components. Here are some guidelines:

® Open or stuck nodes on the crystal oscillator.
Manufacturing defects or failed components may cause
stuck or open lines on ICs used as oscillators.

* DC or capacitive loading on the outputs of the oscillator.
A stuck or tied line may load the oscillator output so that it
cannot generate a signal.

* Failed counter or flip-flop deriving lower frequency
signals from the master clock. Pullup or pulldown
resistors establishing static logic levels on unused counter
or flip-flop inputs may be short or open.

4-291

Clock and Reset

Reset

4-292

® Failed clock-generator IC. Clock generator ICs may fail
due to manufacturing defects or shorted or tied inputs.

Frequency measurements with the probe or /O module are a
good way to trace clock-related problems. For measurements
above 10 MHz, use the probe; measurements below that
frequency can be made with the I/O module.

The Demo/Trainer UUT stimulus program called frequency, in
Section 4.12.6, shows how to program the I/O module to
measure frequency. The frequency of the clock is measured
three times during a 9100A/9105A LEARN operation on a
known-good UUT, when the response file is created. If the
value of the clock is stable, a single decimal value is recorded.
If the value of the clock is unstable, the highest and lowest
values are recorded. With frequency or transition counts, the
min-max range must be large enough to account for variations
between UUTs and variations due to environmental factors,
such as temperature and humidity. To establish the range, first
learn the response from a known-good UUT, then adjust the
range for appropriate tolerance factors.

Some clock-related problems, such as injected noise, marginal
signals, or asymmetrical phases, are hard to detect with digital
test equipment. The probe, which operates at up to 40 MHz, is
very ‘useful for these problems. Asynchronous level history
measurements with the probe can detect marginal signal levels
and noise. If, after measurements with the probe, the UUT still
exhibits erratic clock behavior, check the quality of the clock
signal with a high-bandwidth oscilloscope.

Asynchronous level history is a useful measurement technique
with which to verify the operation of a reset circuit.

Several 9100A/9105A devices are useful in detecting reset
faults. The probe can be used to verify static logic levels on
circuit nodes. The I/O module can be used to overdrive the
Reset input to verify operation. Since most Reset lines connect

P

Clock and Reset

to the microprocessor, the pod can sense whether- this line is
active. In setting up test fixturing, it is helpful to connect the
Reset line to a test point or test connector attached to an I/Q
module line. This allows the test program to automatically reset
the UUT at the start of a test sequence.

Verify operation of the Reset line in both states. The
Demo/Trainer UUT stimulus programs called reset_low and
reset_high, in Section 4.12.6, show how the probe and 1/O
module can be used to troubleshoot reset circuits.

For reset circuits that use a switch or pushbutton, the operator
must usually be involved. A prompt to the operaior can be
displayed, asking that the switch be pressed during certain
modes of the test while measurements are performed.

Clock and Reset Example 4.12.3.

The clock source in the Demo/Trainer UUT is a 31.9399 Mz
oscillator (U18). This frequency is divided by two and by four.
The 8 MHz signal is used by the 82284 clock generator (U1) to
generate the microprocessor clock signals. The 31.9399 MHz
signal is also used in the Video Ready generation circuit.

The 15.9799 MHz signal is used as the clock source for the
video circuit. The Reset signal is controlled by the RESET
pushbutton switch. Pressing this switch causes an active Ready
signal to be generated.

4-293

Clock and Reset

Keystroke Functional Test - 4.124.
Part A:

Measure frequency of clock signals with the probe, using the
PROBE and SOFT KEYS key with the command below:

FREQ AT PROBE =

The pins to be probed and the correct measurements at each
pin are shown in the response table in Figure 4-110.

Part B:
Operate the RESET switch and measure the level of U1-12
with the probe, using the PROBE and SOFT KEYS key
with the command below:
INPUT PROBE LEVEL =

The pins to be probed and the correct measurements at each
pin are shown 1n the response table in Figure 4-111.

4-294

T

e

Clock and Reset

(This page is intentionally blank.)

4-295

Clock and Reset

Keystroke Functional Test (Part A)

CONNECTION TABLE

MEASUREMENT
{NONE) PROBE
ut
uzs
RESPONSE TABLE
FREQUENCY
SIGNAL PART PIN MINIMUM MAXIMUM

CCLK v1-10 7.995 MHZ 8.000 MHZ
PCLK U113 3.997 MHZ 4000 MHZ
16 MHZ u2s-g 15.99 MHZ 16.00 MHZ
32 MHZ uzs-13 31.98 MHZ 82,00 MHZ

4-296

T

Vol

Clock and Reset

+5v
10
1
POWER-ON LED ;!Ds:
A3s
300 s
A e
- -—
+5v 51 80286
] 82284 MICAQOPROCESSOR
e 3 Basaz 16 {55 L
497 F cm 16081 nesgr pi2 RESET |
4 R10 _ dmes
a7 +sv._ 8 leE cLK 110 CLK VIOED
EXTEANAL 1 ’Jg{ cs .NC—L X1 POLK 13 PCLK CONTROL
RESET El 58 gl wowr v b ‘4
P |
2 ~BMHZ S fgpg vi
_ oyNAMIC |
= RAM
320HT TIMING
OSCILLATOA 5 @MHZ
J2MHZ
0
B _|32unHz L 6NC
[VEE:]
aWa-1
—1—0’/ i6

16HHZ VIDEO
ouTPUT

Figure 4-110: Clock and Reset Functional Test (Part A)

4-297

Clock and Reset

Keystroke Functional Test (Part B)

CONNECTION TABLE

MEASUREMENT

PROBE

U1-12

STIMULUS AND RESPONSE TABLE

PART PIN LEVEL
VIR H Low
ui-i2 HIGH

4-298

P

Clock and Reset

+3v

POWER-ON LED

H0
rsv 51 80286
; L 82284 » MICROPROGESSOR
A9 %FaAsaz 18 55
4.7K o CR1 16)%T Reser pi2 FESET
RES
+5Y 8 T 10 CLK
hNC 7 i:c Pilf:(13 PCLK VIDED
" N CONTAOL
—dx2
BHHZ 5
e 9 JEeFl 1
/\/\
DYNAMIC
RAM
92MHZ TIMING
+5V +5v
+5V 14
0SCILLATOR 10 3 J 5 a 5 BHHZ
32MHZ —
i 11 .5 g 9 1BMHZ 1 4 uss
8 |3aWHz]| 13 u2s 2 1 gp-Bnc
uie =K) b-—-.‘—,_NE T
[F1i12 15
LS112 iu . 5“2':6
s o
4.7K
+8v 1
16HHZ VIDED ’
guTPUT i

Figure 4-111: Clock and Reset Functional Test (Part B)

4-299

Clock and Reset

Programmed Functional Test 4.12.5.

4-300

The 15¢_clock program is the programmed functional test for the
Clock and Reset functional block. Ul is a signal conditioning

IC for the Clock, Reset, and Ready signals, however the
tst_clock program tests only the Clock and Reset portion of the
chip.

The tst_clock program uses the gfi status command to determine
if U1 has previously been tested using gfi test. If U1 has not
been tested, a gfi test of Ul is performed. The gfi starus

command is then used to determine if the Clock and Reset
outputs of Ul failed. If the outputs failed, the abor: test
program is executed and GFI troubleshooting is started. (See
the Bus Buffer functional block for a discussion of abort_test).

program tst clock

D T T T T O O O

! FUNCTIONAL TEST of the CLOCK and RESET functicnal block.

! This program tests the CLOCK and RESET functicnal block of the
! Demo/Trainer. The gfi test command, I/0 module and PROBE are used to
! perform the test.

abort_test (ref-pin}) If gfi has an accusatlion
display the accusation else
create a gfi hint for the
ref-pin and terminate the test!
program (GFI begins trouble- !
shoot ing}. 1

1
1
1
1
1
!
! TEST PROGRAMS CALIED:
1
I
!
!
I
1
1

print "\nlTESTING CLOCK & RESET Clreult®

1f (gfi status "U1-10"} = “untested" then
gfi test "U1-10"

end if

if {gfi status "Ui-12") "bad" then abort test {"Ul-12"}

if (gfl status "Ul-10") "bad" then abort_test ("U1-10")

if (gfl status "U1-13") "bad" then abort_test ("U1-13")

if gfl test "U25-9" fails then abort_test ("U25-9"}

print "CLOCK & RESET TEST PASSES"
end program

Clock and Reset

Stimulus Programs and Responses ' 4.12.6.

Figure 4-112 is the stimulus program planning diagram for the
Clock and Reset functional block. frequency is a general-
purpose stimulus program used to measure the frequencies of
various outputs around the Demo/Trainer UUT. reset_high
checks for a high-level Reset signal and reset_low checks for a
low-level Reset signal,

4-301

Clock and Reset

Stimulus Program Planning

PROGRAM: FREQUENCY

T PHEGS THE RESET

DRERAT
MEASURES FREQUENCY foe queadOn 1o 3
MEASUREMENT AT: A
U25-95
U1-10.13

PROGRAM: RESET_HIGH

PROMPTS THE OPERATOR TO PRESS THE RESET
KEY AND THEN CHECKS FOR A HIGH LEVEL

MEASUREMENT AT:

W12

o

4-302

R

e,

Clock and Reset

.

EXTEANAL
HESET

OSCILLATOR
32Mﬁ12

uig

POWER-ON LED

E-ﬁ:
ST . 80286
B2284 MICAOPROCESSOR
2_8!\532 18 80
M eRt 16J%T mEser bi2 RESET |
S -
8V B JesE cLK L10 CLK vIDED *
NC ? 13 PELK
A s PCLK CONTROL
- d Xz
BMHZ & EFI
/\Uw
DYNAMIC
- RAM
I2MHZ TIMING
+35V +5Y
+5v 4
10 3 I, 8 g|-Somuz
3aMHZ :; i ; ves & NC
uzs K gp—
p12 Tk gh? NG g
C F142 15
Ls1i2 |14 . 3"2":6
A34 _°/
4.7K D@
+5V
18MHE VIDED
QuTPUT

Figure 4-112: Clock and Reset Stimulus Program Planning

4-303

Clock and Reset

program reset_high

| STIMULUS PROGRAM characterizes the reset signal when high is active. !

1 !

! Stimulus programs and response files are used by GFI to back-trace !

! from a failing node, The stimulus program must create repeatable UUT !

! activity and the response flle contains the known-good responses for |

| the outputs in the UUT that are stimulated by the stimulus program. '

1 t

! TEST PROGRAMS CALLED: t)
f {none) !
! f
1 GRAPHICS PROGRAMS CALLED: lI
1 {none} b
) t
! Local Constants Modified: J
! CARRAGE RETURN Matches a carrage return input, !

i TRUE Value that is considered active TRUEH
t 1
t Local Variables Modified: i

! input_str) Input from keypad {

! state Level returned from measurement

! pinnum The pin number used by level command!

! finished State of loop looking for condition 1

! devname Measurement device !

SRR N N N R R R R R R R RN RS R R R R R R RN R D R RN S R O R R DR R RN R R N

IR AR R R RN S RN R R R NN R e AR AR RN AR RN RN RN RN RN RN RN N RSN SRR
! Main Declarations i
RSN RN N N N R R S R N R AR RN NS R N R RN RN RN R AR AR R N

declare string CRRRAGE RETURN = "
declare numerlic TRUE = 1

declare string input_str

declare nuomeric state = 0

geclare numeric pinnum = 1
finlshed = 0

! Let GFI determine the testlng device.
if (gfl contrel) = "yes" then
devname = gfl device
measure ref = gfl ref

if measure ref = "Ul" then pinnum = 12
if measure_ref = “U11™ then pinnum = 38

(continued on the next page)

Figure 4-113: Stimulus Program (resef_high)

4-304

Clock and Reset

if measure_ref = “U13" then pinnum = 11
if measure ref = "U31" then pinnum = 35
if measure ref = "U19" then pinnum = 3
if measure_ref = "U7" then pinnum = 15
else
devname = clip ref "ul»
measure ref = "p1-
end if

print "Stimulus Program RESET_HIGH"
! Setup measurement devlce and prompt operator.

pedsetup 'report power' "off*

podsetup ‘report forcing' "off"

pedsetup 'report intr' “off®

podsetup ‘report address' “off"

podsetup 'report data' "off"

podsetup 'report control' "offe

reset devlice devname

sync device devhame, mode "int"

podsetup ‘report forcing' “off"

tlup = open device "“/terml", as "update"

print on tlup , "\O7WHILE MEASURING, Press \1B[7mDemo UUT RESET\1B[Om key."
print on tlup ,"Press 9100 ENTER key If test is stuck."

! Wait for a TRUE. Leave program if <ENTER> key is pressed.

loop until state = TRUE
arm device devname \ readout device devname
if devname = “/probe" then
state = level device devname, type "async"
else
state = level device measure_ref, pin pinnum, type "async"
end if .
if (pell channel tlup, event “input®} = 1 then
input on tlup ,input_str
if input_str = CARRAGE_RETURN then return
end 1f
end loop

! Start response capture. End when POD detects reset,

arm device devname
strobeclock device devname
leop until finlshed = 1
% = readstatus{)
1f (x and $10} = $10 then
strobeclock device devname
finished = 1
end 1f
if (poll channel tlup, event "input") = 1 then
input on tlup ,input_str
if input str = CARRAGE RETURN then return
end if
end loop
readout device devname
print ™\nlinl"

end program

Figure 4-113: Stimulus Program (reset_high) - continued

4-305

Clock and Reset

STIMULUS PROGRAM NAME: RESET HIGH

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Sre With SIG VL LVL Mode Counter Range
Ul-12 PROBE 0001 10 TRANS
Ul-12 I/0 MODULE 0001 10 TRANS

Figure 4-114: Response File {reset_high)

4-306

78 BYTES

Pricrity
Pin

pu—

[t

Nt

. Clock and Reset

program reset_low
STIMULUS PROGRAM characterizes the reset signal when low is active,
from a failing node. The stimulus pregram must create repeatable UUT

1

!

! Stimulus pregrams and response files are used by GFI to backtrace
!

1

I activity and the response file contains the known-gocd responses for
! the cutputs in the UUT that are stimulated by the stimulus program.

! TEST PROGRAMS CALLED:

t
I
1
1
t
1
!
1
I
T
check_meas (device, start, stop, clock, enable} !
Checks to see 1f the measure-~ !
I

1

?

I

]

1

1

1

!

I

1

1
1

1

1

L}

1

! ment is complete using the

! TL/1 checkstatus command. If

! the measurement times out then
! redlsplay connect locations.

1

! GRAPHICS PROGRAMS CALLED:

! {none)

i

! Local Constants Modified:

! CARRAGE RETURN Matches a carrage return input,

! TRUE Value that is conslidered active true
! 1
! Local Variables Modified:

! input_str Input from keypad !
! state Level returned from measurement !
! pionum The pin number used by level command!
! finished State of loop leoking for condition !
! devname Measurement device !
1

declare string CARRAGE RETURN = “n
declare string input str

declare numeric state = 0

declare numeric TRUE = 4

declare numeric pinnum = 1
finished = 0

! Let GFI determine the testing device.

if (gfl control) = "yes" then
devname = gfi device
measure_ref = gfi ref

{continued on the next page)

Figure 4-115: Stimulus Program (reset_low)

4-307

Clock and Reset

if measure ref = "Ul" then plnnum = 11
if measure_ref = "ULl3" then pinnum = 13
if measure ref = "Ul9" then plnnum = 4
1f measure ref = "U7" then pinnum = 15
else
devname = clip ref "U1"
measure ref = "UL”
end 1f

print "Stimulus Program RESET_LOW“
! Setup measurement device and prompt operator.

peodsetup ‘report power' "off"

pedsetup ‘report forcing' "off"

pedsetup ‘report intr' "off™

podsetup 'report address' "off"

podsetup ‘report data' “off"

podsetup 'report contrel! “off"

reset device devname

sync device devname, mede "int"

podsetup 'report forelng' "off"

tlup = open device "/terml", as "upxdate®

print on tlup ,"\O7TWHILE MEASURING, Press \1B[7mDemo UUT RESET\1B[Om key."
print on tlup ,"Press 9100 ENTER key if test is stuck."

! Wait for a TRUE. Leave program Lf <ENTER> key is pressed.

loop untll state = TRUE
arm device devname \ readout device devname
if devname = “/probe" then
state = level device devname, type "async"
else
state = level device measure_ref, pin pinnum, type "async"
end if
if (pocll channel tlup, event “input") = 1 then
input on tlup ,input_str
1f input_str = CARRAGE_RETURN then return
end if
end loop

! Start response capture, End when POD detects reset,

arm device devname
strobeclock device devname
loop until finlshed = 1
x = readstatus(}
1f (x and $10) = $10 then
strobeclock device devname
finished = 1
end 1if
if (poll channel tlup, event "input'} = 1 then
lnput on tlup ,input_str
if lpput_str = CARRAGE_RETURN then return
end 1f
end loop
readout device devname
print ™\nl\nl"

end program

Figure 4-115; Stimulus Program (reset_low) - continued

4-308

Clock and Reseat

STIMULUS PROGRAM NAME: RESET LOW

DESCRIPTION: ST2E: 146 BYTES
Response Data
Node Learned Async Clk Counter Priority
Signal Sre With SIG LVL L¥L Mode Counter Range Pin
U13-10 PROBE 0002 10 TRANS
U13-10 I/0 MODULE 0002 10 TRANS
Ul19-4 1/0 MODULE 0002 10 TRANS
R10-1 PROBE 0002 1 0 TRANS
R9-2 PROBE. 0062 1 0 TRANS
R9-2 I/0 MODULE 0002 1 0 TRANS

Figure 4-116: Response File {reset_fow)

4-309

Clock and Reset

program frequency

||||]|l|lll!|||IIIIIIIllllllllllll|||f|l|III!IIIIIlI‘Il‘IIIfII?IIIII!IIIII

1
1
! stimulus preograms and response flles are wsed by GFY to backtrace

! from a failing node. The stimulus program must create repeatable UUT
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

! This is a general purpose routine that can be used to characterize

1 any free-running system clock, dot clock, ete...

! When measuring frequency no stimulus is normally applied because the
! signal begins running at power on.

1

1

1

t

t

1

1

1

1

1

1

! TEST PROGRAMS CALLED:
(none)

GRAPKICS PROGRAMS CALLED:
{none)

Local Variables Modified:
devname Measurement device

! Glcbal Variabkles Modified:
! {ncne}

handle pod_ﬁimeout_po_clk
end handle

! Let GFI determine the measurement device,

if {gfl control} = "yes" then
devname = gfi device

else
devname = "/modl*

end if

print “Stimulus Program FREQUENCY"

! Set addressing mede and setup measurement device,

podsetup 'report power' “off"
potdsetup ‘report forcing' "off"
podsetup 'report Intr' “off"
podsetup 'report address' "off"
podsetup 'repert data' "off"
podsetup 'report control' "off"
reset device devname

counter device devname, mode "“freq"

! No stlmulus 1s applled; response ls frequency.
arm device devname ! Start response capture,

readout device devname ! End response capture,
end program

Figure 4-117: Stimulus Program (frequency)

4-310

T

e,

Clock and Reset

STIMULUS PROGRAM NAME: FREQUENCY

DESCRIPTION: SIZE: 370 BYTES
-— Response Data
Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
U1-10 PROBE 10 FREQ 7585000-8383000 u25-5
Ul-10 I/0 MODULE 10 FREQ 7585000-8383000
Ul-13 I1/0 MCODULE 10 FREQ 3792000-4191000 J25-5
U25-5 PROBE 10 FREQ 7585000-8383000
025-5 I/0 MODULE 10 FREQ 7585000-8383000
U25-9 PROBE 10 FREQ 15170G00-16760000
U42-3 I/0 MODULE 10 FREQ 379200-419100
u42-7 I/0 MODULE 10 FREQ T98500-838300
U43-11 I/0 MODULE 10 FREG 63200-69800
U56-12 PROBE 10 FREQ 63200-69800
Us6-12 I1/C MODULE 10 FREQ 63200-69800
U13-2 PROBE 10 FREQ 7585000-8383000
Uil-2 I/0 MODULE 10 FREQ 7585000-8363000
¥1-1 PROBE 10 FREQ 3670000-3700000

Figure 4-118: Response File (frequency)

4-311

Clock and Reset

Summary of Complete Solution for
Clock and Reset 4.12.7.

The entire set of programs and files needed to test and GII
troubleshoot the Clock and Reset functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Clock and Reset)
Programs (PROGRAM}:
TST _CLOCK Functional Test Section 4.12.5
FREQUENCY Stimulus Program Figure 4-117
RESET_HIGH Stimulus Program Figure 4-113
RESET_LOW Stimulus Program Figure 4-115
LEVELS Stimulus Program Figure 4-92
Stimulus Program Responses (RESPONSE):
FREQUENCY Figure 4-118
RESET_HIGH Figure 4-114
RESET_LOW Figure 4-116
LEVELS Figure 4-93
Node List (NODE);
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

. 4-312

.

Interrupt Circuit

INTERRUPT CIRCUIT FUNCTIONAL BLOCK 4.13.

Introduction to Interrupt Circuits 4.13.1.

Microprocessor-system interrupt circuits collect and prioritize the
interrupt output of each circuit that has an interrupt-request
output. These outputs come from circuits such as peripheral
devices (keyboards, disk controllers, modems, printers) and
dynamic RAM controllers. If there are enough interrupt signals,
the system may use an interrupt controller to prioritize interrupts.

In some systems, the microprocessor can read a pointer to a
branch address (called an "interrupt vector") from the
microprocessor's external bus. These systems may have
circuitry to generate the interrupt vector when the appropriate
interrupt signal is asserted. Quite often, the vector-generation
and interrupt-controller circuits are the same.

Figure 4-119 shows a typical interrupt circuit for a
microprocessor system.

Considerations for Testing and
Troubleshooting 4.13.2,

The Interrupt Circuit is part of a feedback loop. Address and
data buses go out from the microprocessor to the various
components in the UUT and interrupt lines come back from
those components, through the Interrupt Circuit, to the
microprocessor,

The pod can break this feedback loop by selectively ignoring the
interrupt line to the pod. Particularly during troubleshooting, the
interrupt line must be ignored so the 9100A/9105A is not
interrupted while testing the interrupt circuitry.

4-313

Interrupt Circuit

Interrupt

Peripheral | _Request
Component

Interrupt

Paripheral | Request
Component

Interrupt

Peripheral Request
Component

4-314

Interrupt
Caontroller
and Interrupt
Vector
Generator

Interrupt
Request

Address Bus

4

Micro-
processor

Figure 4-119: Typical Interrupt Circuit

S

Interrupt Circuit

The Interrupt Circuit can be tested by the following procedure:

1. Read or write to each component that can generate an
interrupt so that an interrupt is generated.

2, After each interrupt is generated, check to see that the
pod has detected the interrupt. If all interrupts are
detected by the pod, the interrupt circuit is good.

If the microprocessor on your UUT has the ability to fetch an
interrupt vector from its external bus, test the circuit that
generates that vector by reading or writing to a component and
thereby forcing that component to generate an interrupt. The
interrupt vector should be the same address as the read or write
address used to generate the interrupt.

Some pods (e.g. 8086, 8088, 80186, 80188, 80286, 68000)
can read interrupt vectors. The '86-family and '88-family pods,
for example, can read vectors automatically in response to an
interrupt input from the pod to the UUT, or by command from
the operator (TL/1 programs that perform these functions are
accessed with the POD key on the operator's keypad).

The availability of these automatic interrupt testing functions
greatly eases the test procedures. With these functions, the
procedure for testing interrupt vector generation circuits might
work like this:

1. Configure the pod to capture an interrupt vector (this
is usually called an "interrupt acknowledge cycle").

2. Write the interrupt vector to the interrupt controller or
vector generator.

3. Perform some operation that causes the interrupt
controller to interrupt the pod and place a vector on
the UUT's bus. This operation may simply mean
overdriving an input to the interrupt controller.

4-315

Interrupt Circuit

Troubleshooting the interrupt circuitry is accomplished by
performing a procedure that causes each circuit with an interrupt
request output to activate that output. Then signatures are
recorded for all the nodes in the Interrupt Circuit. The steps to
perform this are as follows:

1. Generate an interrupt on each interrupt request line
that feeds into the interrupt circuit by performing the
appropriate reads and writes.

2. Measure the signatures for each node in the Interrupt
Circuit and compare to known-good signatures.

3. If an incorrect signature is found, follow that signal
back towards its source.

You may need to disable the reporting of active interrupts by the
pod when troubleshooting this circuit. If reporting is allowed
and the interrupt is asserted, you may be unnecessarily bothered
with "active interrupt" messages when the pod is used in
stimulus operations. Section 4.15.2, "Forcing Lines", in this
manual describes how to disable reporting of active interrupts.

Interrupt Circuit Example 4.13.3.

Figure 4-120 shows the Interrupt Circuit for the Demo/Trainer
UUT. This circuit uses two interrupts. The first, I/OINT, is
configurable to be active when a character is transmitted or
received through the serial port. The second, TIMER, is
configurable to be active when the timer in the DUART IC (in
the Serial I/O functional block) times out or when the output port
toggles the bit in the output register connected to the TIMER
output line,

Keystroke Functional Test 4.13.4.

4-316

1. Use the SETUP MENU, EXEC, and READ keys with the
commands below to disable interrupt trapping and to

—

Interrupt Circuit

initialize the Serial I/O functional block:

SETUP POD REPORT INTR ACTIVE OFF
EXECUTE RS232 INIT
READ ADDR 2016 =

(BDDR OPTION: I/0 BYTE)

Use the READ key with the commands below to check the
status of interrupts in the UUT:

READ STATUS OF MICRO =
(Should be C0 with no interrupts)
READ ADDR 30000 =
(ADDR OPTION: MEMORY WORD)
{Should be 27 with no interrupts)

Use the WRITE and READ keys with the following
commands to force an interrupt on TIMER (by setting output
OP3 low) and to check that the interrupt occurs:

WRITE DATA 0 TO ADDR 201A
(ADDR OPTION: I/0 BYTE)
WRITE DATA 8 TO ADDR 201C
{(ADDR OPTION: I/0 BYTE)
READ STATUS OF MICRO =
(Should be C8 with an interrupt)
READ ADDR 30000 =
(ADDR OPTION: MEMORY WORD)
{Should be 25 with a TIMER interrupt)
WRITE DATA 8 TO ADDR 201E
{(ADDR OPTION: I/0 BYTE)

Use the WRITE and READ keys with the following
commands to force an interrupt on I/OINT (by causing an
interrupt from R§232) and to check that this interrupt occurs:

WRITE DATA 10 TO ADDR 200A
(ADDR OPTION: I/Q BYTE)
WRITE DATA 41 TO ADDR 2016
{ADDR OPTION: I/O BYTE)

4-317

4-318

Interrupt Circuit

READ STATUS OF MICRO

(Should be C8 with an interrupt)
READ ADDR 30000 =

(Should be 22 with the I/OINT interrupt)
{(ADDR OPTION: MEMORY WORD)
WRITE DATA 0 TC ADDR 200A

(ADDR OPTICON: I/O BYTE)

5. Re-enable interrupt trapping by using the SETUP MENU
key to enter the following command:

SETUP POD REPORT INTR ACTIVE ON

-

Interrupt Circuit

(This page is intentionally blank.)

4-319

Interrupt Circuit

Keystroke Functional Test

CONNECTION TABLE
MEASUREMENT
TEST ACCESS SOCKET TEST ACCESS SCCKET

STIMULUS AND MEASUREMENT TABLE

MEASUREMENT
STATUS ADDRESS 30000
co) 27
cs 25
cB 22

4-320

T

Interrupt Circuit

T INTA
READY
+5V
80286 L5148 L5373
MICROPROCESSCH ‘:3?'(10 T W@ 9 3_bo ao] aso
AT R’ b2 2 hi o 001
2] 16 ? b 03] 002
1313 Gshldnc 8 by g 1003
1 15 3y g4 12 iD04 |
: 15 w5lis +BV ; 5 g5l 15 100N
aus z s qp| 16 1006 |
BUFFER WFRRE 4)5 2p7 oyl 1007
3 54 =y
SH3-2 L uzo | 4 "ngum
j;-. !
SERIAL
/0
ADDHESS
DECODE

Figure 4-120: Interrupt Circuit Functional Test

4-321

Interrupt Circuit

Programmed Functional Test 4.13.5.

The tst_intrpt program is the programmed functional test for the
Interrupt Circuit functional block. This program checks the
interrupt poll register using the gfi test command. If the gfi test
command fails, the abort_test program is executed and GFI
troubleshooting begins. (See the Bus Buffer functional block for
a discussion of the abort_test program).

program tst_intrpt

FUNCTIONAL TEST of the INTERRUPT functional block.

This program tests the INTERRUPT functional block of the Demo/Trainer,!
The gfi test command and I/0 module are used to perform the test.

1 1
! 1
! 1
t |
! !
! TEST PROGRAMS CALLED: !
! abort_test (ref-pin) If gfi has an accusation !
! display the accusaticn else !
! create a gfi hint for the !
[ref-pin and terminate the test!
! pregram (GFI begins trouble- !
! sheot ing) . !
1

print *\nlTESTING INTERRUPT Circuit"

podsetup ‘report intr' "off"
if gfi test "Ul0-1" fails then abort_test ("U10-1"}

print "INTERRUPT TEST PASSES™
end program

Stimulus Programs and Responses 4.13.6.

4-322

Figure 4-121 is the stimulus program planning diagram for the
Interrupt Circuit functional block. The decode stimulus program
performs an access at each decoded address space. The ¢/ Ivi
stimulus program transmits a character out the serial port and
measures signals using TTL threshold levels. The interrupt
stimulus program generates interrupts in the Scrlal I/O circuit
and measures interrupt lines,

N

Interrupt Circuit

(This page is intentionally blank.)

4-323

Interrupt Circuit

PROGRAM: CTRL_OUT3

PERFORMS AN ACCESS FOR EACH DECODED
BLOCK

MEASUREMENT AT:

u4-3

4-324

Stimulus Program Planning

Interrupt Circuit

READY
INTA
CIARCUIT
AEAOT
+5v
80288
MICROPROCESSCA A33 0 L5148 a . S nso
& 7K 24T A0 0 o
’ EETH vy Aoy a4 00
1217 azie 7 oz g2 pe2 |
. EEN -) ST 8 bha o 1003 |
| 513 13|y galde 100
T Eo LIS +5Y 14 bhg g5,48 1005
e 17 b 18 IN05
Bui\;sen 1SPARE :_‘g_ 157 041401067
2 1 uzo < [der
I“—a uie
15
SERIAL - TIMER
1/0 - T70INT ALSO4
e 12L890
‘—_. 12
 ADDRESS
OECODE
INTROY

Figure 4-121: Interrupt Circuit Stimulus Program Planning

4-325

Interrupt Circuit

program interrupt

1

STIMULUS PROGRAM to exercise the interrupt circuitry.

stimulus programs and response flles are used by GFI to backtrace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

This stimulus program sets the DUART to cause an interrupt when data
is written to the transmit register. Immediately after the write to
the reglster the interrupt vector is read from the bus (read @ 30000).

TEST PROGRAMS CALLED:
{none)

GRAPKICS PROGRAMS CALLED:
rs232_init () This is the initallzation for
the DUART which contains a
timer used for interrupts.

local Variables Modified:
devname Measurement device

Global Variables Modified:
(none) !

Let GFI determine the measurement device.

if {(gfi control} = “yes" then
devname = gfi devlice

else
devname = “/modl"

end Af

print "Stimulus Program INTERRUPT"

Set addressing mode and setup measurement device,

reset device devname

execute rs232_init (}

write addr $200A, data 510 ! Set interrupt on trammit - no loopback
setspace space (getspace space "1l/o", size "byte")

sync device devname, mode "pod"

sync device "/pod", mode “data"

threshold device "/probe", level "ttl"

A,

{continued on the next page)

Figure 4-122: Stimulus Program (interrupt)

4-326

Interrupt Circuit

! Present stimulus to UUT.

arm device devname ! Start response capture,
write addr $2016, data $55 ! Txd port B
setspace space [(getspace space "memory", size "word")
read addr 530000 ! read the interrupt vector onto the bus,
setspace space (getspace space "ifo", slze “byte")
write addr $2016, data $D ! Txd port B

setspace space ({(getspace space "memory", size "word"}
read addr $300G0
setspace space (getspace space "l/eo", slze "byte")
write addr $201C, data S$FF
setspace space (getspace space "memory", size "word")
read addr $30000
setspace space {getspace space "l/o", size "hyte®)
vwrite addr $201E, data SFF ! Pulse timer interrupt.
setspace space (getspace space "memory", size "word")
read addr $30000

readout device devname ! End response capture.

end program

Figure 4-122; Stimulus Program (interrupt) - continued

4-327

Interrupt Circuit

STIMULUS PROGRAM NAME: INTERRUPT

DESCRIPTION: STZE: 660 BYTES
Response Data
Node Learned Async Clk Counter Priority

Signal Src wWith SIG LVL INL Mode Ceunter Range Pin
Ul0-6 FROBE 00AB 1 ¢ 1 0 TRANS 4

Ulo-6 1/0 MODULE OOAB 1 0 10 TRANS 4

U10-2 PROBE 00AB 10 10TRANS 4

U10-2 I/0 MODULE D0OAB 10 10TRANS 4

U10-5 PROBE DOSE 10 10TRANS 2

Ulo-5 I/0 MCDULE 005F 10 10 TRANS 2

y10-9 PROBE 002A 10 10TRANS 5

U10-9 I/0 MODULE 002A 10 10TRANS 5

Ul0-12 PROBE 008B 10 10TRANS 5

U10-12 I/0 MODULE O008B 166 1 0 TRANS 5

G10-15 PROBE 005F 10 10TRANS 2

G10-15 I/0 MODULE 005F 1¢ 10TRANS 2

Uio-1é PROBE 008B 10 10TRANS 5

ul0-1¢6 I/0 MODULE (08B 10 10TRANS 5

Ui0-19 PROBE C00A 1 0 1 0 TRANS 3

U10~19 I/0 MODULE COOA 10 10 TRANS 6

U20-6 I/0 MODULE €000 10 0 TRANS 2

u20-7 I/0 MODULE COFE 1 1 TRANS O

U20-9 /0 MODULE €000 10 0 TRANS 2

U20-15 PROBE Q0FE 10 1 TRANS 2

u20-15 I/0 MODULE OOFE 10 1 TRANS 2

R33-1 PROBE O0FE 1 1 TRANS O

R33-1 1/0 MODULE OQOFE 1 1 TRANS 0

U5-11 I/0 MODULE O0O0AB 10 T'RANS

Figure 4-123; Response File {interrupt)

4-328

Interrupt Circuit

Summary of Complete Solution for
Interrupt Circuit

4.13.7.

The entire set of programs and files needed to test and GFI
troubleshoot the Interrupt Circuit functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the

location in this manual for each file,

Section 4.13.5
Figure 4-103
Figure 4-122
Figure 4-108

Figure 4-104
Figure 4-123
Figure 4-109

Appendix B

Appendix A

UUT DIRECTORY
{Complete File Set for Interrupt Circuit)
Programs (PROGRAM):
TST_INTRPT Functional Test
CTRL_OUT3 Stimulus Program
INTERRUPT Stimulus Program
DECODE Stimulus Program
Stimulus Program Responses (RESPONSE):
CTRL_OUT3
INTERRUPT
DECODE
Node List (NODE):
NODELIST
Text Files (TEXT):
Reference Designator List (REF):
REFLIST
Compiled Database (DATABASE):
GFIDATA

Compiled by the 9100A

4-329

Interrupt Circuit

4-330

(This page is intentionally blank.)

/(""“-.

Ready Circuit

READY CIRCUIT FUNCTIONAL BLOCK 4.14.

Introduction to Ready Circuits 4.14.1.

Some peripheral components have different (slower) timing than
the microprocessor. To accommodate these components, wait
states (extra clock cycles) are added to the read and write bus
cycles. The number of wait states inserted is typically controlled
by an input to the microprocessor called Wait, Ready, or
DTACK; in this discussion, we will call it the Ready signal.

Many microprocessor systems have a circuit that generates the
Ready signal in response to the selection of a peripheral
component. The circuit (Figure 4-124) typically consists of a
counter and/or a state machine that uses the microprocessor
clock. The inputs to the state machine include a strobe signal
from the microprocessor (to indicate that a bus cycle has started)
and the various decoder outputs that select the components
needing wait states.

In a given bus cycle, the state machine typically recognizes the
assertion of the microprocessor strobe signal, and looks at the
decoder signals to determine which component is being selected.
The state machine then asserts Ready for the appropriate number
of clock cycles.

Considerations for Testing and
Troubleshooting 4.14.2.

Ready circuits often involve multiple feedback loops between the
microprocessor and the ROM, RAM timing, and video control
circuits. Since these feedback loops may need to remain
unbroken while testing memory and/or video circuits, the Ready
circuit is tested separately. Here is a good way test the Ready
circuit:

I. Break the feedback loop by overdriving the lines that
form the feedback loop.

4-331

Readly Circuit

Micropracessor
Clock

4-332

Ready Signal
—
Dacodaer
Outputs _,,
—»| Ready
Micro- Counter
processor and State
Strobe Machine
Clock
Clock

Figure 4-124: Typical Ready Circuit

/—"‘\

Ready Circuit

2. Exercise the rest of the inputs using microprocessor
reads and writes.

3. Measure the output of the loop.

A second approach is to use one /O module to overdrive all the
inputs and another 1/O module (or another clip on the same I/O
module) to measure the Ready output to the microprocessor.

Test each IC in the circuit individually, using the following
procedure:

1. Clip the I/O module onto the IC.

2. Synchronize and arm the I/O module (see the
Technical User's Manual for this procedure).

3. Run a stimulus procedure to make each output go
high and low (this may mean overdriving another
part of the circuit with another I/O module clip).

4. Use the SHOW IfO MOD command on the /O MOD
key (operator's keypad) to observe signatures on
each pin of the IC.

5. Write down the signatures gathered from each pin on
the IC, both inputs and outputs.

Compare the signatures gathered on the suspect UUT to those
from a known-good UUT to determine which pins are bad.

Test the timing properties of the state machine that actually
generates the Ready signal. You can do this with the external
Start, Stop, and Clock lines on the I/O module or clock module
to begin timing the wait states. Connect the external Clock line
to the Ready-circuit's clock input (the microprocessor clock).
Connect the Start line to the signal that starts the wait state
generation. Set the Stop count to the proper number of clock
cycles to verify that the wait state becomes active at the proper
time. If the Stop count is set properly, decreasing its value by 1

4-333

Ready Circuit

from the proper value should show that the wait state does not
become active and using the proper value should show that the
wait state is active.

Again, compare the responses gathered on the suspect UUT to
those from a known-good UUT to determine which pins are
bad.

If the outputs of the ICs are bad and the inputs are good, suspect
the IC and/or suspect shorts on the output signal paths. If the
inputs are bad as well, trace back toward the microprocessor. If
your UUT has address latches or buffers, perform a similar test
on them.

You may need to disable the Ready input to the pod and turn
reporting of forcing lines off when troubleshooting this circuit.
If the Ready input to the pod is enabled, and Ready is not
asserted for a long enough time due to testing operations, the
pod may timeout if it is being used in the stimulus operation.
Section 4.15.4, "Forcing Lines", in this manual describes how
to disable the Ready input to the pod.

Ready Circuit Example 4.14.3.

4-334

The Ready Circuit for the Demo/Trainer UUT is shown in
Figure 4-125. The microprocessor does not complete the
current bus cycle until an active Ready signal (a low) is received
from the Ready Circuit. Any circuit addressed to be read by the
microprocessor must return such a Ready signal. Some circuits
(ROMO, ROM1, and Interrupt) set SRDY low right away and
the read is completed on the next clock cycle. Other circuits
(Parallel 170, Serial I/O, and Video Control) cannot match the
speed of the microprocessor and add three wait states for proper
timing. In addition, Dynamic RAM Timing may insert wait
states in order to delay until RAM refresh finishes, and Video
RAM may insert wait states to synchronize the microprocessor
with video scan sequences.

The microprocessor drives address lines, which go to address
decoding, and the outputs of address decode are inputs to the

L

Ready Circuit

Ready Circuit. The output of the Ready Circuit is an input to the
microprocessor, which forms a feedback loop. The pod is able
to break this feedback loop by ignoring and disabling the Ready
input.

The Ready Circuit has a second, mare troublesome feedback
loop. The Ready output, Ul-4, feeds back as an input to the
Ready Circuit at U4-12. This second feedback loop must be
broken in order to perform testing or troubleshooting on the
Ready Circuit.

Keystroke Functional Test 4.14.4,
The functional test for the Ready Circuit uses two /O rioduie
clips. One clip is used for measurement and the othe; clip is
used to overdrive Ready Circuit inputs (to break the Ready
Circuit feedback loop).

In the following procedure use one clip module to measure iJ7 -
4, U4-6, and U17-11 outputs. Use the second clip mouale 2.
prompted by the program.

Part A:

1. Use a 20-pin clip module on side A of I/O module 1 and a

14-pin clip module on side B as the second clip of I/O
module 1 to check the Ready Circuit output.

2. Use the EXEC and I/0O MOD keys with the commands below
for U1 and U4. The correct measurements for each pin are
shown in the response table of Figure 4-125.
 EXECUTE UUT DEMO PROGRAM READY 1
The program will prompt:

Enter ref name (Choose Ul, U4, Ul4 OR U1l5)

Type in U1 and press the ENTER key.

4-335

Ready Circuit

Follow the instructions to blip Ul and press the Ready
button on the clip module. Then clip U4 and press the
Ready button on its clip module.

SHOW I/Q MOD 1 PIN 4 CAPTURED RESPONSES
SHOW I/O0 MOD 1 PIN 26 CAPTURED RESPONSES

NOTE

The SHOW command requires a clip module pin
number rather than a part pin number. This requires
You to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
been done for you in this example, and the results are
shown in the "IlO MOD PIN" column of the
response table in Figure 4-125. '

Part B:
1. Use a 14-pin clip module on side B of IO module 1 to check
the Ready Circuit.

2. Use the EXEC and I/O MOD keys with the commands below
for U4. The correct measurement for this step is shown in
response table #1 of Figure 4-126.

EXECUTE UUT DEMO PROGRAM READY 2
The program will prompt:
Enter ref name (Choose Ul, U4, U5, U6 or Ul7)

Type in U4 and press the ENTER key.

Follow the instructions to clip U4 and press the Ready
button on the clip module.

4-336

Ready Circuit

SHOW I/O MOD 1 PIN 26 CAPTURED RESPONSES

3. Use a 14-pin clip module on side A of /0 module 1 to check
the Ready Circuit,

4. Use the EXEC and I/O MOD keys with the commands below
for U4. The correct measurement for this step is shown in
response table #2 of Figure 4-126.

EXECUTE UUT DEMO PROGRAM READY 3
The program will prompt:
Enter ref name (Choose Ul, U4, US or U6)

Type in U4 and press the ENTER key.

Follow the instructions to clip U4 and press the Ready
button on the clip module.

SHOW I/0 MOD 1 PIN 26 CAPTURED RESPONSES

Part C:
1. Use a 14-pin clip module on side A of I/O module 1 and a

20-pin clip module on side B as the second clip of I/O
module 1 to check the Ready Circuit.

2. Use the EXEC and 1/Q MOD keys with the commands below
for US. The correct measurement for each pin is shown in
the response table of Figure 4-127.
EXECUTE UUT DEMO PROGRAM READY 4
The program will prompt:

Enter ref name (Chocse U4, U5 or Ul7)

4-337

Ready Circuit

4-338

Type in U5 and press the ENTER key.

Follow the instructions to clip U5 and press the Ready
button on the clip module.

Then clip U17 using the second clip module and press its
Ready button.

SHOW I/O MCD 1 PIN 3 CAPTURED RESPONSES

Part D:
1. Use a 20-pin clip module on side A of I/O module 1 to check

the Ready Circuit I/O wait state generator.

2. Use the EXEC and I/O MOD keys with the commands below

for U17. The correct measurement for this step is shown in
response table #1 of Figure 4-128.

EXECUTE UUT DEMO PROGRAM READY 5
The program will prompt:

Enter ref name (Choose U5 or Ul7)
Type in U17 and press the ENTER key.

Follow the instructions to clip U17 and press the Ready
button on the clip module.

SHOW I/0 MOD 1 PIN 17 CAPTURED RESPONSES

. Use a 20-pin clip module on side A of I/O module 1 to check

the Ready Circuit I/O wait state generator.

P

Ready Circuit

4. Use the EXEC and J/O MOD keys with the commands below
for U17. The correct measurement responses for each step
are shown in response table #2 of Figure 4-128.
EXECUTE UUT DEMO PROGRAM READY §
The pro grahl will prompt:
Enter ref name (Choose U5 or Ul7)

Type in U17 and press the ENTER key.

Follow the instructions to clip U17 and press the Ready
button on the clip module.

SHOW I/O MOD 1 PIN 17 CAPTURED RESPONSES

4-339

Ready Circuit

Keystroke Functional Test (Part A)

CONNECTION TABLE

MEASUREMENT

1/0 MOD

ud-4 ut-4
U4-5 4.6
RESPONSE TABLE
SIGNAL PART PIN 170 MCD PIN SIGNATURE
READY U1-4 4 0015
SRDY U4-6 26 0015

4-340

s

Ready Circuit

Figure 4-125: Ready Circuit Functional Test (Part A)

BUS ALATCH 80286
BUFFER MICROPROCESSOA
DYNAMIC
RAM -
TIMING FERDY
B2284
| 1B]ET
1555 TEAOV pa
ROM - rav i | FFOY
> L Uz} wrovem
WAL 2 2wy
TFAREZ 3 Py Juisd A1
ROMOABY 4 L339 " 810
ADDRESS ROMIAODY 5| Y8 £ N sy
DECODE RAWACY _ &
VAANROY 11
Y a2 BHOY
VIDED
CONTROL
CLOCK
AND
RESET
INTERAUPT
CIRCUIT

4-341

Ready Circuit

Keystroke Functional Test (Part B)

CONNECTION TABLE
TEST ACCESS SOCKET Ud-6
Ua-1i

RESPONSE TABLE #1

SIGNAL PART PIN 170 MOD PIN SIGNATURE ASYNC LEVEL

SADY u4-6 26 0000 10

RESPONSE TABLE #2

SIGNAL PART PIN' 170 MOD PIN ASYNC LEVEL | TRANS COUNT]

SRDY

u4-8

28

01

3

4-342

Ready Circuit

Bus ALATCH
BUFFER hl
DYNAMIC
RAM >~
TIMING FERDY
82284
18|57
- 18{50 READY ht
ROH . py b
- +5V 1 e
BPAREY 2 TADYEN
TFAAEZ 3 2J A0y
L830 3l zanveR R1
ROWOROY 4 o J7—< . 810
ADORESS AOAIADY__ &| UB ,\-l/_\ -
DECODE PARRDY. 8
VRARADY _ 41
5 a2 EAOY
VIOED - , ALsoo
CONTROL o
ALBOB LE164
i2 +5V » aald_NC
13 2 18 oe HC
CLOCK L NG L
AND CLK T HC SWI-5
RESET ALSO0D 12
~
INTERRUPT
CIACUIT
1021808

Figure 4-126: Ready Circuit Functional Test (Part B)

4-343

Ready Circuit

Keystroke Functional Test (Part C)

CONNECTION TABLE

MEASUREMENT
Us-1 Us-3
u17-9
RESPONSE TABLE
SIGNAL PART PIN 170 MOD PIN SIGNATURE
—_— U5-3 3 000A

4-344

P i

Ready Circuit

BUS | o ALATGH 802B6
BUFFER MICROPROCESSOR
DYNAMIC
RAM -
TIMING AEADY
82284
15 fay
16{55 FEAOY pd
AOM el hi-id 17 mav
l LI ::17 AADVER
e 2 s s
py s {rim a0
ADDRESS 5 i ' st
DECDDE h:]
VIDEQ
CONTROL
CLAOCK =3
AND SW3-5
RAESET 12
~
INTERRUPT
CIRCUIT

VIOSET

PRISC

Al
10 LS08

Figure 4-127: Ready Circuit Functional Test {Part C)

4-345

Ready Circuit

Keystroke Functional Test (Part D)

CONNECTION TABLE
 MEASUREIINY CONT MEASUREMENT
ui7-1
RESPONSE TABLE #1
SIGNAL PARTPIN | I/OMODPIN | ASYNCLEVEL | TRANS COUNT
IWAITS U1z o1 1
RESPONSE TABLE #2
SIGNAL PART PIN 1/0 MOD PIN TRANS COUNT

AWAITS

U171

17

0

4-346

s

Ready Circuit

o
BuS ALATER 80286
BUFFER MICAOPROCESSOR
-]
DYNAMIC
AAM -
TIMING S
22284
; 3
ROM »- 15055 BEADY b4
- 25Y s I RADY
bl +5v 1
SPANET 2 [EEZEMWEH
Tz 3|, S o
FORBAGY 4 228 TROVEN o
; ADDRESS oRaneY_s| YB -2 1
' DECOBE PG a sy
VAAWADY i1
+5v 12 BAOY
—_—
i VIDEG _
; CONTROL
|

INTERRUPT
CIRCLIT

Figure 4-128: Ready Circuit Functional Test (Part D)

4-347

Ready Circuit

Programmed Functional Test 4.14.6.

The tst_ready program is the programmed functional test for the
Ready Circuit functional block. This program checks the Ready
circuit using the gfi test command. If the gfi fest command fails,
the abort test program is executed and GFI troubleshooting
begins. (See the Bus Buffer functional block for a discussion of
the abort_test program).

The gfi test command executes a number of stimulus programs.
The ready 1, ready 2, ready 3, and ready 4 stimulus programs
overdrive nodes in order to break the feedback loop in the Ready
circuit. These programs will ask the operator to use a second
clip on a second component so that the circuit can be overdriven.

program tst_ready

FUNCTTONAL TEST of the READY functlonal block.

|
1
This program tests the READY functional block of the Demo/Trainer. !
The gfl test command and I/C medule are used to perform the test. The !
ready test involves overdriving components to break the feedback loop !
in the ready partition., Two I/0 module clips are required; one for !
measurement and one for stimulus {overdriving}. !
I
1
1
1
1

TEST PROGRAMS CALLED:
abort test (ref-pin) If gfi has an accusation
- display the accusation else
create a gfi hint for the
ref-pin and terminate the test!
program {GFI begins trouble-
shooting) . !

if (gfi status "Ul-4"}) = "untested" then
print "\ni\nlTESTING READY CIRCUIT"

pedsetup 'enable ~ready' "off"
podsetup 'report forelng' "off"

if (gfi status "Ul-4"} = "untested" then gfi test "Ul-4"
if {gfl! status "U1-4") = “"bad" or {gfi status "Ul-2") = "bad" or
{gfi status "U1-3"} = "bad" then

abort_test (*U1-4")

else
print "READY CIRCUIT PASSES"

end if

end if
end pregram

4-348

- AT

P

Ready Circuit

Stimulus Programs and Responses 4.147.

Figure 4-129 is the stimulus program planning diagram for the
Ready Circuit functional block. The ready 1, ready 2,
ready_3, and ready_4 stimulus programs use one clip for
measurement and a second clip to overdrive the Ready circuit in
order to break the feedback loop in this circuit. ready 5 and
ready 6 provide stimulus to measure the operation of the I/O
ready generator, U17. These two stimulus programs count how
many 8 Mhz clocks occur during the wait state generated by
U17.

The steps to break the Ready feedback loop to diagnose a fault
are shown below:

1. Overdrive inputs U4-4 and U4-5. Then measure
outputs U4-6 and Ul-4. The 82284 chip (U1)
synchronizes the Ready output (U4-6) to the
microprocessor read/write cycles. This requires the
ready I stimulus program to output the level, allow
enough time for the signal to get synchronized, then
check the level at the output U1-4,

2. Finish breaking the Ready signal feedback loop by
overdriving inputs U4-12 and U4-13, then measure
the outputs U4-11, U5-3, and U4-6. In order to
measure U5-3 and U4-6, the other inputs U5-1 and
U4-5 must be held high so the signals will flow
through the AND gates. The ready 4 stimulus
program performs this step.

3. Hold the node with output source U4-11 high. This
allows signals from U6 to flow through U5-3 to U4-
6. At the same time, holding U4-11 high causes
output U17-11 to stabilize at a high state, allowing
signals from U56 to ripple through U5-6 to U4-6.
Now use the pod to exercise the Ready Circuit inputs
that are driven by the Address Decode functional
block. The ready 2 stimulus program performs this
sequence for all components that can be forced to use
zero wait states. It does this by disabling U17 (all

4-349

Ready Circuit

components except RAM and Video RAM). Since
the pod has turned ~READY ENABLE OFF, the pod
generates a sync pulse with zero wait states.
Because the RAM and Video RAM return wait states,
taking signature measurements on RAM and Video
RAM will turn out to be unstable. To solve this
problem, ready 2 accesses all components except

‘RAM and Video RAM. Then the ready 3 stimulus

program performs a similar operation, but exercises
only RAM and Video RAM. ready 3 responses are
characterized by asynchronous level history and
transition counts to allow the RAM and Video RAM
wait state signals to be measured.

Measure the I/O component wait state generator,
U17. The Clear input at U17-9 is toggled low. At
the same time a measurement using external Clock
(and Start) is made. The External Clock line is
connected to the § MHz clock CLK and the Start line
is connected to the node which includes U17-9. A
Stop Count is set and transition counts and level
history are measured. The ready 6 stimulus
program uses a Stop Count of four clocks and the
response is expected to be low level history and zero
transitions, indicating that the wait state output was
low for at least four clocks. The ready_ 5 stimulus
program uses a Stop Count of six clocks. In this
case, a response of high and low level history is
expected, and a transition count of 1 is expected.
These results indicate that the wait state finished
within six clock cycles.

Advice for Making GFl Work in the Presence of Ready Faults

When a Ready fault exists, a forcing-line fault condition will be

generated.

However, the pod must ignore the Ready

forcing-line fault condition so that the stimulus program will
execute completely. Otherwise, a fault condition would be
generated and GFI would terminate. To turn this report off, a
SETUP REPORT FORCING ~READY OFF command can be

4-350

Ready Circuit

performed. When this is done, the pod will continue to respond
to the Ready signal, but will not generate a fault message. If the
Ready signal is stuck high, the pod will cause the 9100A/9105A
to generate a pod timeout fault condition. To cure this, a SETUP
ENABLE ~READY OFF command is performed. At this point,
GFI will work properly and Ready problems can be isolated to
the failing component or node.

More generally, GFI works best if every stimulus program turns
all reporting conditions off. In addition, those stimulus
programs that create activity in the kernel area, may need to turn
off Enable Ready. All Demo/Trainer UUT stimulus programs
related to the address bus, data bus, control signals, address
decoding, interrupts, and ready circuitry turn the Ready Enable
off at the beginning of the stimulus program and the turn Ready
Enable back on at the end of the program.

One more note: the 80286 microprocessor uses a separate bus
controller that has no feedback lines to the microprocessor.
When the pod disables the Ready input and performs zero wait
state operations regardless of the Ready input, the bus controller
can get out of synchronization from the pod and may get
confused. When this happens, an enabled_line timeout fault
condition is generated. The solution is to provide a handler for
that fault condition in each stimulus program that enables and
disables Ready. The handler for the fault condition should call a
program which performs a recovery procedure. The recovery
procedure depends on the UUT. Usually, forcing the Ready
line active or performing a Reset will recover synchronization.
Or, by disabling Ready and then performing a read or write in
memory space followed by enabling Ready may recover
synchronization of the 80286 pod and the bus controller. Most
other microprocessors do not have this problem.

4-351

Ready Circuit

Stimulus Program Planning

PROGRAM: READY_1

QVEADRIVES U4-6 TO CHECK THE SYNCHRONIZED
READY QUTPUT

MEASUREMENT AT:

u1i-4

PROGRAM: READY.2

OVERDRIVES THE NODE AT Ud-11 AND ALSO
EXERCISES THE READY RETURN LINES (EXCEPT
VRAM AND VRAMRADY)

MEASUREMENT AT:

Us-68
U5-36
us-8

ubs-8

4-352

AT

Ready Circuit

BUS ALATCH 80286
BUFFER MICROPROCESSOR
DYNAMIC
AAM -
TIMING EADT
82284
18 [T
1556 REA]
AOM - - .
ARDY
- +5¥]
EPARET 2 h_EA i)
TAREE a 2, sy ot
ADRYADY 4 L33 3] SOV 010
ACDRESS AOWINDY 5| UB /XUI/\
OECODE FARAOY 8 +5v
RAHI 11
+5v 12 TADY
VIDED , ALsoo
CONTROL
CLOCK
AND
AESET
INTERRUPT
CIACUIT

Figure 4-129: Ready Circuit Stimulus Program Pianning

4-353

Ready Circuit

program ready 1

STIMULUS PROGRAM overdrives U4 in ready circuit,
Characterizes U4-6 and Ul-4.

! $timulus pregrams and response files are used by GFL to backtrace

from a failing nede. The stimulus program must create repeatable UUT !
! activity and the response flle contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program,

1
1
1
1
r
I
1
1 1
! Phis stimulus program ls one of the programs which creates activity '
in the kernel area of the UUT. These programs create activity with !
{ or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 mlcroprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
! bus controller cut of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchrenizatlon. The recover{} program is executed to !
! resynchronize the bus controller and the pod.
1

recover { The 80286 microprocessor has a!
bus controller that is totally!
separate from the pod. 1In 1
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchrenizes the pod and the!
bus contreller. !

! GRAPHICS PROGRAMS CALLED:
(ncne)

! Global Variables Modifled:
recover times Reset to Zero

! Local Varlables Modified:

measure_dev Measurement device

stimulus dev stimulus device {overdrives}
llrllll1ll1||[!!!!1l|l‘ll!lllIIrIIIIlI1||

1
1
1
]
1
!
1
1
1
r
]
1
1
1
!
1
1
1
1
t !
! TEST PROGRAMS CALLED: !
1
1
1
1
1
1
1
t
t
r
1
1
1
1
!
t
1
!
1
1

1
! Maln Declarations 1
RN N N N RN N AR N N NN RN NN RN AR RN RN RN R

declare global numeric recover times

{continued on the next page)

Figure 4-130: Stimulus Program (ready 1)

4-354

o

Ready Circuit

handle pod_timeout_enabled line
recover ()

end handle

handle pod timeout_recovered
recover ()

end handle

handle pod timout no_clk

end handle

recover_times = 0
! Let GFI determine measurement device
if {gfi contrel} = "yes" then

measure dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print " {Chose Ul, U4, U14 or U15)"
measure_ref = "' \ input measure ref

if measure ref <> "U14" then
measure dev = ¢lip ref measure ref
else
probe ref "Ul4-63" \ measure dev = "/probe"
end if -
end if

! Determine stimulus device

if measure ref = "U4% then
stimulus_dev = measure dev
else
print "\OT\1B[2J\1B({201\1B{3;1¢ USING \1B[7mSECONDA\1B[Om CLIP."
stimulus_dev = clip ref "yq»
print “\1B[20h"
end if
print "Stimulus Program READY_ 1%

{continued on the next page)

Figure 4-130: Stimulus Program (ready_1) - continued

4-355

Ready Circuit

1 Setup measurement device.

podsetup 'enable ~ready' "off"
podsetup ‘'standby function off'
podsetup 'report power' 'off"
podsetup ‘'report forcing' “off"
podsetup ‘report intr' "off®
podsetup ‘report address' “off"
pedsetup 'report data' "off"
podsetup ‘report contrel' "off"
reset device measure_dev

reset device stimulus_dev

sync device measure_dev, mode "int™

1 Perform Stimulus

arm device measure dev
writepin device "U4*, pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level "1, mode "latch"
strobeclock device measure_dev
writepin device "U4", pin 4, level "0", mode "latch"
writepin device "U4v, pin 53, level *1", mode "latch"
strobeclock device measure dev
writepin device "U4", pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level “1", mode "“latch"
strobeclock device measure dev
writepin device "U4", pin 4, level “1", mode "latch"
writepin device "U4", pin 5, level "0", mode "latch"
strobeclock device measure dev
writepin device "U4", pin 4, level "1", mode "latch"
writepin device "U4", pin 5, level "1", mode "latch"
strobeclock device measure dev

readout device measure dev

clearoutputs device stimulus_dev
podsetup ‘standby functlon on'
podsetup 'enable ~ready' “on"

end program

Figure 4-130: Stimulus Program (ready_1) - continued

4-356

A

Ready Circuit

STIMULUS PROGRAM NAME: READY 1

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With 51G IVL IVL Mode Counter Range
u4-6 I/C MODULE 0015 10 TRANS
ui-4 PRCBE 0015 10 TRANS
Ui-4 I/0 MODULE 0015 10 TRANS

Figure 4-131: Response File (ready_1)

94 BYTES

Priority
Pin

4-357

Ready Circuit

program ready 2

IIII‘IIIJIITI‘lll||l|||IIIIIIIIIIIllrIIII'III!IIIIIII1IIIII1I|IIIIIlIlI‘IlIl

S$TIMUTUS PROGRAM overdrives U4 in ready circuit.
Characterizes U4-6 and Ul-4,

stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contalns the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program,

1
t
t
1
1
1
1
!
This stimulus program ls cne of the programs which creates activity H
in the kernel area of the UUT. These programs create activity with !
or witheut the ready clrcuit working properly. Because of this, all !
the stimulus programs ln the kernel area must disable the READY input !
to the ped, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 mlicroprocesser has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the ped. Two fault !
handlers trap ped timecut conditions that indicate the bus controller !
is out of synchronlzation. The recover(} pregram ls executed to !
resynchronize the bus controller and the pod. . !
1

TEST PROGRAMS CALLED: !
recover {} The 80286 microprocessor has a!
bus controller that is tetally!

separate frem the pod. 1In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronlzes the pod and the!

bus controller, !

GRAPHICS PROGRAMS CALLED:
{none)

Global Variables Modifled:

recover_times Reset to Zero

Local Varilables Modifled:
measure_dev Measurement device
stimulus dev Stimulus device (overdrives)

declare global numeric recover_times

{continued on the next page)

Figure 4-132: Stimulus Program (ready_2)

4-358

Ready Circuit

handle pod_timeout enabled line
recover {}

end handle

handle pod timeout recovered
recover (}

end handle

handle pod timout no_clk

end handle

recover_times = 0
| Let GFI determine measurement device
1f {gfi control) = “yes" then

measure dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print " [Chose Ul, U4, U5, U6, USE or UlH"

measure_ref = "" \ input measure ref
measure dev = clip ref measure_ref
end if

! Detemine stimulus device

1f measure_ref = "U1" then
print "\07\1B[20\1B[201\1B[3;1f USING \1B[7mSECOND\1B[Cm CLIP."
stimulus_dev = clip ref “y4n
print "\1B[20h"
else
stimulus_dev - measure dev
end if
print "Stimulus Program RERDY_ 2"

1 Setup measurement device,

podsetup ‘enable ~ready® “off"

podsetup 'report power' “off"

podsetup 'report forcing' "off"

podsetup ‘report lntrt “offs

podsetup 'report address*® “off*

podsetup ‘report data* “off"

pedsetup 'report control' “off»

io_byte = getspace space "1/o%, siZa “byte"
mem werd = getspace space "memory", size "word"

{continued on the next page)

‘Figure 4-132: Stimulus Program (ready,_2) - confinued

4-359

Ready Circuit

reset device measure dev
reset device stimulus dev

sync device measure_dev, mode "pod"

sync device "/pod", mode “data"

old cal = getoffset device measure dev
setoffset device measure dev, offset (1000000 - 56)

if measure_ref = "US5"™ then

writepin device "U5", pin 2,
writepin device "U5", pin 4,

level “1", mode
level "1", mode

else 1f measure_ref = "U4" or measure ref = "U1"
writepln device "U4%, pln 11, level "1", mode

end 1f

! stimulate ICs and capture response,

arm device measure_dev
setspace (mem_word}
read addr $30000
read addr $40000
read addr $50000
read addr $E0QQQ
read addr $F0000
setspace (io byte)
read addr @
read addr $2000
read addr $4000

readout device measure dev

if stimulus dev <> “/probe" then clearoutputs device stimulus_dev

Start response

IPOLL
SPARE1
SPARE2
ROMO
ROM1

VIDSLT
I/0SLE
PPISLT

setoffset device measure dev, offset old cal

pedsetup ‘enable ~ready' "on"

end program

Figure 4-132: Stimulus Program (ready_2) - continued

4-360

"latch"
"latch"
then

"latch"

capture,

| End response capture.

P

Ready Circuit

STIMULUS PROGRAM NAME: READY 2
DESCRIPTICN:

Node
Signal Src

ud-¢
u4-8
U4-8
05=3
u5-6
Us6-8
Use-8
Ue-8

Learned
with

I1/0 MODULE
PROBE

1/0 MGDULE
1/0 MODULE
1/0 MODULE
PROBE

I/0 MODULE
I1/0 MODULE

SIG

0000
007E
O07E
0086
0078
0086
0cee
0078

Figure 4-133: Response File (ready_2)

Response Data

Async Clk Counter

IVL LVL Mode

[l S g S
COO0OCODOOO

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

SIZE:

Counter Range

143 BYTES

Pricrity
Bin

4-361

Ready Circuit

program ready 3

STIMULUS PROGRAM toggles ready circuit inputs which generate
walt states,

! stimulus programs and response files are used by GFI to backtrace

| from a failing node., The stimulus program must create repeatable UUT !
| activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

I
1
1
1
|
1
1
! !
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create actlvity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus pregrams in the kernel area must disable the READY input !
| to the pod, then perform the stimulus, then re-enable the READY input !
| to the ped. The 80286 microprocessor has a separate bus contreller; !
for this reason, disabling ready and performing stimulus can get the !

! bus controller cut of synchronization with the pod. Two fault !
! handlers trap ped timeout conditicns that indicate the bus controller !
is out of synchronization. The recover(} program is executed to !

I resynchronize the bus controller and the pod, !
1

1
1
!
1
1
1
1
1
1
1
1
1
1
!
1
|
1
t
1
1 .
| TEST PROGRAMS CALLED: !
! recover 0 The 80286 microprocessor has al
! bus contreller that is totally!
! separate from the pod. In |
! some cases the pod can get out!
! of sync with the bus control- !
! ler., The recover program !
! resynchronizes the pod and the!
! bus contrcller. !
1
'
I
t
T
I
1
t
i
I
1

! GRAPHILS PROGRAMS CALLED:
{neng)

recover_times Reset to Zero

! Local Variables Modified:
measure dev Measurement device
stimulus_dev Stimulus device {overdrives)
1|r|||1|1||[1|r1|||1|| |||r||r||||||:|||||||1|||||l1|r1||r||!|||1|r1||r

1
t
1
' !
! Global Varlables Modified: t
I
I
|
|
1
1

I]Ifll|1|1lll1|I|I|I|I|!IIIIIIIIIII!![!!!!!!!‘ trrtrrrrrrerirrrErIILLIL

! Main Declarations

declare global numerlic recover_tlimes

(continued on the next page)

Figure 4-134: Stimulus Program (ready 3)

4-362

Ready Circuit

ez
e
=
£
"3
IS
&
=
&

RN R NN R R N NN RN SR RN RN AR RN RN

handle pod_timeout enabled line
recover ()

end handle

handle pod timecut recovered
recover{}

end handle

handle pod_timout_no_clk

end handle

recover_times = Q
I Let GFI determine measurement device

1f (gfi control) = "yes" then
measure_dev = gfi device
measure ref = gfi ref
else
print "Enter reference name of part to measure:"
print " {Chose U1, U4, U5 or UG)"

measure ref = "" \ input measure ref
measure dev = clip ref measure_ref
end if

! Determlne stimulus device

1f measure ref = "Ul" then

print "‘07\15[2J\1B[201\18[3;1f USING \1B[7mSECOND\1B(Om CLIP."

stimulus_dev = clip ref "U4
print "\1B[20h"
else
stimulus_dev = measure dev
end if
print "stimulus Program READY 3"

{continued on the next page)

Figure 4-134: Stimulus Program (ready 3) - continued

4-363

Ready Circuit

! Setup measurement device.

poedsetup 'enable ~ready' "off"

podsetup 'standby function off!

podsetup 'report power' "off"

podsetup 'report forcing' "off®

podsetup 'report intr' "off"

podsetup 'report address' "off"

podsetup 'report data' "off"

pedsetup 'report control' “off"

o byte = getspace space "i/o", size 'byte"
mem word = getspace space "memory", size “word"
reset device measure dev

reset device stimulus dev

sync device measure dev, mode "pod"

sync device “/pod", mode "data"

old cal = getoffset device measure dev
setoffset device measure_dev, offset (1000000 = 56}

if measure_ref = "U5" then
writepin device "U5", pin 2, level "1", mode "latch"
writepin device "US", pin 4, level “1“, mode "latch"
else 1f measure ref = "U4" or measure_ref = "U1" then
writepin device "U4", pin 11, level *1", mode "latch"
end if

! Stimulate ICs and capture response;

arm device measure dev ! Start response capture.
setspace (mem_word)
read addr 0 ! RAMO
read addr $10000 ! RAML
write addr $20000, data O ! VRAM (write only)
1

readout device measure_dev ! End response capture.
clearoutputs device stimulus_dev

setoffset devlice measure_dev, offset old cal

podsetup 'standby functicn on!

podsetup 'enable ~ready' "on"

end program

Figure 4-134; Stimulus Program {ready_3) - continued

4-364

AT

.

l

—

Ready Circuit

STIMULUS PROGRAM NAME: READY 3

DESCRIPTION: SIZE: 112 BYTES
Response Data —~m=——eeemmma oo
Node Learned Async Clk Counter Priority
Slgnal szc With sSIG IVL LVL Mode Counter Range Pin
U4-¢ I1/0 MODULE 10 TRANS 3
U5-3 I1/0 MODULE 10 TRANS 3
Ue=-8 I/0 MODULE 1¢ TRANS 3

Figure 4-135: Response File (ready_3)

4-365

Ready Circuit

program ready_ 4

SRR R AR R R R R R R N N N N A N N NN R NN NN RN

| STIMULUS PROGRAM overdrives U4 in ready clrcuit.
Characterizes Ud4-6 and Ul=-4.

Stimulus programs and response files are used by GFI to backtrace
! from a faillng node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1
1
I
1
1
1
H
]
! This stimulus program ls one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !

! or without the ready clrcuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
| to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The B0286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault 1
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover({) program ls executed to !
! resynchronize the bus controller and the ped. '
!

1

1

1

1

1

1

1

t

I

1

1

1

|

1

1

1

1

1

1

! !
! TEST PROGRAMS CALLED: !
! recover () The 80286 microprocessor has a!
! bus controller that is totally!
! separate from the pod, In !
! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program !
1 resynchronizes the ped and the!
| bus controller. !
I

1

|

|

1

1

1

1

1

1

1

! GRAPHICS PROGRAMS CALLED:
(none}

! Global Variables Modified:
recover_times Reset to Zero

! Local Varliables Modifled:
measure dev Measurement device

I
1
|
|
1
1
1
'
]
stimulus_dev Stimulus device {overdrives} !
f

declare global numerlc recover times

{continued on the next page)

Figure 4-136: Stimulus Program {ready_4)

4-366

AT

o

Ready Circuit

handle pod_timecut_enabled line
recover ()

end handle

handle pod timecut recovered
recover {)

end handle

handle ped_timout_no clk

end handle

recover times = 0
! Let GFI determine measurement device

if (gfi control) = "yes" then
measure_dev = gfi device
measure ref = gfi ref

else
print "Enter reference name of part to measure:"
print " (Chose U4, U5 or U1}
measure_ref = "" \ input measure_ref
measure dev = clip ref measure ref

end if

! DPetermine stimulus device

if measure_ref = "U4" then
print "\NOUN1B[2U\N1B[201\1B[3;1f USING \1B{7mSECONDAIB[(m CLIP."

stimulus_dev = clip ref "ud4s"

else if measure ref = "U5" then
print "\GIN1B{20\1B(201\1B{3;1f USING \1B{7mSECONM\1B[0m CLIP.*

stimulus_dev = clip ref "yl7n

else 1f measure_ref = "U17" then .
print "\OT\1B[2J\1B[201\1B[3;1f USING \1B[7mSECONDA1B[Om CLIP.™
stimulus dev = clip ref "U4»

end if

print "\1B[20h"

print "Stimulus Program READY_4*

{continued on the next page)

Figure 4-136: Stimulus Program (ready_4) - continued

4-367

Ready Circuit

| Setup measurement device.

podsetup 'enable ~ready' "off"
podsetup 'report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' "eff*
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup 'repert control' "off"
reset device measure dev

reset device stimulus dev

sync device measure dev, mode "“int"
sync device stimulus_dev, mode "int"

if measure ref = "U4" then

storepatt device
storepatt device
storepatt device
storepatt device
else if measure_ref
storepatt device
storepatt device
else if measure ref
storepatt device
storepatt device
end 1f

"u4", pin 12,
"u4", pin 13,
w45, pin 6,
"g4s5*%, pin 3,
= "U5" then

"gs", pin 1,

"pi7", pin 9,
= "Ul7" then
"4, pin 12,
g4, pin 13,

patt "10111"
patt "11101"
patt "00000"
patt "00000"
patt "11111"
patt "10101"
patt "10111"
patt *11101"

! Provide stimulus to UUT using I/0 medule to overdrive,

arm device measure dev

if measure ref =

writepatt device
else if measure_ref = "US" then
writepatt device

"J4" then

»UJ45,U4", mode “pulse”

"U17,05", mode “pulse"

else if measure ref = "Ul7" then
writepatt device "U4", mode

end if

readout device measure dev

podsetup 'enable ~ready' “on"

end program

"pulse"

Figure 4-136: Stimulus Program (ready_4) - continued

4-368

Pama

P

e

Ready Circuit

STIMULUS PROGRAM NAME: READY 4
DESCRTPTION: SIZE:

Response Data

Node Learned Async Clk Counter
signal Src With s81G VL IVL Mode Counter Range
U4-11 I/0 MODULE 0015 10 TRANS
05-3 I/0 MODULE 0G0A 10 TRANS

Figure 4-137: Response File {ready 4)

78 BYTES

Priority
Bin

4-369

Ready Circuit

program ready 5

STIMULUS PROGRAM characterizes the ready clrecuit,

stimulus programs ahd respense flies are uwsed by GFI to backtrace
| from a falling node. The stimulus program must create repeatable UUT !
| aptivity and the response file contains the known-good responses for
| the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
! 1
{ This stimulus program ls one of the programs which creates activity !
t in the kernel area of the UUT. These programs create activity with !
1 or without the ready circuit working properly. Because of this, all !
1 the stimulus programs in the kernel area must disable the READY Input !
1 to the pod, then perform the stimulus, then re-enable the READY input !
| to the pod, The B0286 microprocessor has a separate bus controller; !
1 for this reason, disabling ready and performing stimulus can get the !
I bus controller out of synchronization with the pod. Two fault !
| handlers trap pod timeout conditions that indicate the bus controller !

is out of synchronization. The recover{) program is executed to !
! resynchronize the bus controller and the pod. !
!

1
t
1
|
1
1
1
{
t
1
1
1
1
1
I
|
t
t
! !
1 TEST PROGRAMS CALLED: !
! recover {) The 80286 microprocessor has al
! bus controller that is totally!
! separate from the pod. In !
1 some cases the ped can get out!
1 of sync with the bus control- !
l ler. The recover program !
t resynchronizes the pod and the!
' bus contreller. !
t 1
' check meas {device, start, stop, cleck, enable) !
1 Checks to see if the measure- !
! ment is complete using the !
! TL/1 checkstatus command. If !
! the measurement times cut then!
! redisplay connect locations. !
!
1
1
1
b
!
r
1
1
1
1
]
|
]

1 GRAPHICS PROGRAMS CALLED:
{none}

! Local Variables Modifled:
done returned from check_meas{)
recover times Reset to Zero
local Varlables Modified:

measure dev Measurement device

1

1

1

1

1

1

! !
! Global Varlables Modifled: 1
]

|

1

]

stimulus_dev Stimulus device (overdrives) !

]

BRI R R R R AR R A RN NN N A R R AR SRR R S R AR R A R RN R R Y]

{continued on the next page)

Figure 4-138: Stimulus Program (ready_5)

4-370

T

Ready Circuit

declare global numeric recover times
declare numeric dohe = 0

handle ped timecut _enabled line
recover()

end handle

handle pod timeout recovered
recover ()

end handie

recover times = 0
! Let GFI determine the measurement device.

1f {gfi control) = "yes™ then
measure_dev = gfl device
measure ref = gfl ref
else
print "Enter reference name of part tc measure;"
print " {Chose U5 or UL7}"
measure_ref = "™\ input measure ref
measure dev = cllp ref measure ref
end if
print "Stimulus Program READY 5"

| Set addressing mode and setup measurement device.

podsetup 'enable ~ready' "off"
podsetup 'standby function off!
podsetup 'report power' "off"
podsetup 'report forcing' "off®
podsetup 'report intr' "offn

pedsetup 'report address' “offn
podsetup ‘report data' “off"

podsetup 'report contrel' “off"
setspace{ getspace{ "i/o", "byte" })
reset device measure_dev

sync device measure dev, mode “ext®
enable device measure dev, mode "high®
edge device measure dev, start "+", stop “count", clock "-#
stopcount device measure dev, count 7

{continued on the next page)

Figure 4-138: Stimulus Program (ready_5) - continued

4-371

. Ready Circuit

! Prompt user to connect external lines,

if measure_ref = "U17" then

connect. device measure_dev, start "U4-11", clock "Ul-10", common "gnd"
else

connect device measure_dev, start "Ul7-%", clock "Ul-10", common “gnd"
end if

1 External lines determine measurement,

loop until done = 1
arm device measure dev
read addr 0
done = check meas {measure dev, "U4-117, "*m, =pl=10m, ")
readout device measure dev
end loop

clearoutputs device measure dev
podsetup *standby function on!

podsetup 'enable ~ready' "on"
end program

Figure 4-138: Stimulus Program (ready_5) - continued '[\

4-372

Ready Circuit

STIMJLUS PROGRAM NAME: READY 5

DESCRIPTION: SIZE:
Response Data
Node Learned Async Clk Counter
Signal Src With s1G

LWVL IVL Mode Counter Range

U17-11 I/0 MODULE 10 TRANS 1

Figure 4-139: Response File (ready_5)

69 BYTES

Priority
Pin

4-373

Ready Circuit

program ready_6

STIMULUS PROGRAM to wiggle all address lines from the uP.

in the kernel area of the UUT.

TEST PROGRAMS CALLED:
recover (}

GRAPHICS PROGRAMS CALLED:
{none}

Global Varlables Modified:
recover_times

Local Varlables Medified:
measure dev
stimulus_dev

Stimulus programs and respense flles are used by GFI to backirace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-gocd responses for
the outputs in the UUT that are stimulated by the stimulus pregram.

1
1
1
1
!
t
1
This stimulus program is one of the programs which creates activity !
These programs create activity with !

or without the ready clrcult working properly. Because cof this, all |
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod, Two fault !
handlers trap ped timeout conditions that indicate the bus controller !
is out of synchronization. The recover(} program is executed to !
resynchronize the bus controller and the pod. !
1

The 80286 microprccessor has a!l
bus controller that is tetally!
separate from the pod. In !
some cases the pod can get out!
cf sync with the bus control- !
ler. The recover program !
resynchronlzes the pod and the!
bus controller. I

Measurement device

1
1
!
1
T
Reset to Zero H
r
1
!
stimulus device (overdrives) !

1

{continued on the next page)

Figure 4-140: Stimulus Program (ready_6)

4-374

AT

—

2 st

Ready Circuit

declare global numeric recover Limes
declare numeric done = O

handle pod_plmeout¥enabled_11ne
recover{)

end handle

handle pod_timeout recovered
recover (}

end handle

recover_times = 0
! Let GFI determine the measurement device.

if (gfi centrol} = "yes" then
measure_dev = gfi devica
measure ref = gfi ref
else
print "Enter reference name- of part to measure:"
print * {Chose U5 or Ul7)*
measure_ref = "" \ input measure ref
measure dev = clip ref measure ref
end if .
print "Stimulus Program READY 6"

I Set addressing mode and setup measurement device.

podsetup ‘enable ~ready' "off"
podsetup 'standby function off!

podsetup ‘report power' "off#

pedsetup 'report forcing' "eff"

podsetup 'report intr' “off“

podsetup 'report address' “offn

podsetup 'report data* "off"

podsetup ‘report control* "off"

setspace(getspace("i/o", “byte" })

reset device measure dev

sync device measure_dev, mode "ext"
enable device measure dev, mode "high"
edge device measure dev, start "+", stop "count", clock M-
stopcount device measure dev, count 4

{continued on the next page)

Figure 4-140: Stimulus Program (ready_6) - continued

4-375

Ready Circuit

I Prompt user to connect external lines.

if measure_ref = "U17" then

connect device measure dev, start "U4-11", clock "Ul-10", commen "gnd"
else

connect device measure dev, start "U17-9%", cleock "U1-10", common "gnd”
end if

! External lines determine measurement .

loop until done = 1
arm device measure dev
read addr 0
done = check_meas (measure_dev, "Uq—ll", u*u' "01—10", niu}
readeut device measure_dev
end loop

clearcutputs device measure_dev
podsetup 'standby function on'
podsetup 'enable ~ready' "on®

end program

Figure 4-140: Stimulus Program {ready 6) - continued

4-376

AT

P

“

el

Ready Circuit

STIMULUS PROGRAM NAME: READY_6

DESCRIPTION: SIZE:
Response Data —-—~-—————mcommmmmu
Node Learned Asyne Clk Counter
Signal $rc With SIG IVL LVL Mode Counter Range
U17-11 I/0 MODULE 10 0 TRANS 0

Figure 4-141: Response File (ready_6)

70 BYTES

Priority
Pin

4-377

Ready Circuit

Summary of Complete Solution for
Ready Circuit

4-378

4.14.8.

The entire set of programs and files needed to test and GFI
troubleshoot the Ready Circuit functional block is shown below.
The format below is similar to a 9100A/9105A UUT directory
(you could consider the functional block to be a small UUT), but
in addition shows the use of each program and the location in
this manual for each file.

UUT DIRECTORY
{Complete File Set for Ready Circuit)
Programs (PROGRAM};
TST_READY Functional Test Section 4.14.5
READY_1 Stimulus Program Figure 4-130
READY_2 Stimulus Program Figure 4-132
READY_3 Stimulus Program Figurc 4-134
READY_4 Stimulus Program Figure 4-136
READY 5 Stimulus Program Figure 4-138
READY_6 Stimulus Program Figure 4-140
Stimulus Program Responses (RESPONSE}):
READY_1) Figure 4-131
READY_2 Figure 4-133
READY_3 Figure 4-135
READY 4 Figure 4-137
READY_5 Figure 4-139
READY_6 Figure 4-141
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

P

T

Other Functional Blocks and Circuits

OTHER FUNCTIONAL BLOCKS AND CIRCUITS 4.15,

The 9100A/9105A provides the capability to handle a number of
special circuits or situations, Among these are watchdog timers
forcing lines, feedback loops, and in-circuit component testing.

Watchdog Timers 4.151.

Watchdog timers usually interfere with testing and
troubleshooting. If your UUT has a watchdog timer, your test
procedure or program must disable it before performing tests.

Many watchdog timers initiate a master reset when they detect
incorrect activity. Others may use a high-priority interrupt line
to reset the system. -

Whenever possible, physically disable the watchdog timer with a
jumper or switch provided for that purpose. If the watchdog
timer cannot be disabled at the UUT, the 9100A/9105A may be
able to ignore it with the SETUP POD REPORT FORCING
SIGNAIL ACTIVE OFF keypad command, or disable it with a
command like SETUP POD ENABLE READY ON/OFF. Be
very careful, however, when doing this. Read the precautions
about these commands in Section 4.15.2, "Forcing Lines."

Forcing Lines 4.15.2,

In some situations, forcing lines must be disabled (disconnected
from the pod microprocessor) during a test. You can do this
with the SETUP POD ENABLE READY ON/OFF keypad
command ("READY" is a pod-dependent choice; some pods
may call this line by a different name).

Exercise care whenever you disable a forcing line. Write or read
commands to Circuits that generate wait states through a Ready
line may become unpredictable after the Ready line is disabled at
the pod.

4-379

Other Functional Blocks and Circuits

In addition to disabling forcing lines, you can also ignore them.
The SETUP POD REPORT FORCING SIGNAL ACTIVE OFF
keypad command will prevent the reporting of forcing lines. In
this mode, the pod behaves normally but forcing conditions are
not reported by the pod to the 9100A/9105A.

Exercise care with this mode also. The pod's hardware
performance is not affected and the pod will continue reacting to
the forcing line. If the UUT generates a permanent wait state
using a forcing line, the pod will halt and the system will display
a timeout message. Other fault-indicating signals on your UUT
will also be ignored if the forcing line is disabled. Be sure that
your UUT hardware is not affected by the same forcing line.

Breaking Feedback Loops 4.15.3.

Microprocessor-based systems often have several feedback
loops. The microprocessor and the components tied to the data
and address buses form a large feedback loop. Most of the
loops in the system will be broken when the microprocessor is
replaced by the pod, because the pod can selectively ignore or
report conditions of status and forcing lines. However, there
may be additional loops which are not broken by the pod.

Figure 4-125 shows a feedback loop in the Ready functional
block of the Demo/Trainer UUT. The READY output (U1-4) is
fed back as an input at U4-12.

To test a functional block that contains a feedback loop, drive all
of its inputs, including the inputs connected to outputs that form
the feedback loop, and measure the outputs. Use the I/O module
1o overdrive inputs while measuring signature, level, and count
at the outputs.

Visual and Acoustic Interfaces 4.15.4.
Some circuits, such as LEDs and beepers, have both electrical

characteristics and visual or acoustic characteristics . In general,
stimulus programs should ignore the visual or acoustic

4-380

Pl

AT

Other Functional Blocks and Circuits

characteristics and measure only the electrical characteristics .
The functional tests should prompt the test operator to verify the
visual or acoustical characteristics .

If the functional test fails, use the gfi test command. If gfi test
fails, start GFI troubleshooting. If the functional test fails and
gfi test passes, the part is bad, since the part operates incorrectly
but the electrical signals at the part are good.

In the case of the Parallel I/O functional block on the
Demo/Trainer UUT, the functional test includes a prompt to the
operator to verify the correct display on the LEDs. If the LEDs
fail, the Parallel I/O functional test should perform a gfi test,
which will run the stimulus programs and check the electrical
properties. If gfi test passes (when the Parallel 1/O functional
test failed), it means that the electrical characteristics are good
but the display is bad. The LEDs are bad and the operator
should be prompted to replace them. If the gfi test fails, GFI
troubleshooting can begin at the pin where the gfi zest failed.

In-Circuit Component Tests 4.15.5.

If you wish, you can write TL/1 programs to test individual
components rather than using the GFI to do so. These in-circuit
component tests use a sequence of ones and zeroes defined with
the TL/1 storepatt command and executed by the TL/1 writepatt
command to overdrive the inputs of the component to be tested
while measuring the signatures or level histories of its outputs.
A test operator runs these tests by using the EXEC key to run
the required program,

4-381

Other Functional Blocks and Circuits

(This page is intentionally blank.)

4-382

AT

Section 5

UUT Go/No-Go
Functional Tests

PROGRAMMED GO/NO-GO FUNCTIONAL
TESTING 5.1.

The UUT go/no-go test is the third of four modular levels in
programming the 9100A, as shown in Figure 5-1. In this third
level, the go/no-go test determines whether the UUT is good
(passes) or bad (fails). The go/no-go test combines built-in
functional test commands with functional tests designed by the
programmer,

The go/no-go test is simple because it builds on the tests of
functional blocks. It determines only whether the entire UUT is
good or bad. It does not determine which functional block is
causing a failure.

CREATING A PROGRAMMED GO/NO-GO
FUNCTIONAL TEST 5.2.

Suppose a UUT has 14 functional blocks and a functional test is
defined for each of them. One way to create a go/no-go test is to
perform all 14 functional tests, Some blocks, however, can be
tested indirectly by testing other blocks. For example, the bus
buffer is assumed to be good if the ROM, RAM, and other
blocks pass their tests. Therefore, a second way to create the
go/no-go test is to perform functional tests only on functional
blocks which cannot be tested indirectly by testing other blocks.

5-1

Level 1

« Stimulus Programs for Nodes

«Learned Node Responses
from Known-Geod UUT

+Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

L evel g

7 GoiNoGo Test
“ - for the Entire UUT:

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault |sofation
to the Block Level

Figure 5-1: UUT Go/No-Go Funclional Testing (Level 3)

Figure 5-2 shows the steps used to reach a go/no-go status
decision. Care must be taken to ensure that your go/no-go test
really does test the UUT for all possible faults.

Figure 5-3 shows the structure of a go/no-go functional test for
the Demo/Trainer UUT. For this UUT, only six functional
blocks need to be tested for the go/no-go functional test of the
UUT: Microprocessor Bus, RAM, ROM, Parallel I/O, Serial
I/O, and Video. The microprocessor bus test is run first because
it is built-in, fast, and provides excellent diagnostic information.
A failure on the microprocessor bus will cause most other

‘circuits to fail, so it is most efficient to check this functional

block first.

In the Demo/Trainer UUT, the following functional blocks are
tested indirectly by the go/no-go test:

Clock and Reset
Ready Circuit
Interrupt Circuit

Bus Buffer

Dynamic RAM Timing
Address Decode
Video Control

Video RAM

Figure 5-4 is a listing of the go/no-go functional test program for
the Demo/Trainer UUT. It calls the functional test for each of
the functional blocks which must be tested directly for the UUT
go/no-go functional test to be complete. The remaining
functional blocks are tested indirectly; if they fail, one of the six
blocks that is tested by the go/no-go test will fail also.

EVALUATING TEST EFFECTIVENESS 5.3.

The purpose of the go/no-go test is to determine whether the
UUT is good or bad. Two measures are frequently used to
evaluate how well a go/no-go functional test performs: node
activity and fault coverage. Node activity is important because

Select a Functional
Block Which Cannot
be Tested Indirectly
by Testing Another
Functional Block

A
Execute the Functional

Test for the Functional
Block

Fault
Message?

Any Functional
Blocks Not Yet
Tested Directly
or Indirectly?

Yes

A

(uwutpasses) (UUT Fails)

Figure 5-2: Go/No-Go Test Sequence

“

Test Microprocessor Bus

Test RAM

Test ROM

Test Parallel 11O

Test Serial 110

Test Video

Figure 5-3: Demo/Trainer UUT Go/No-Go Test

5-5

program go_nogo

RAM, Parallel I/0, Serial I/0, and Video functional blocks}.
By testing the slx major functional blecks, the remaining
functional blocks are indirectly tested,
TEST PROGRAMS CALLED:
buffered bus, and address
select leogle.

of the Demo/Trainer UUT,

of the Demo/Tralner UUT.
test_pla () Test the PARALLEL I/Q

functional block of the

Demo/Trainer UUT.

test_rs232 {} Test the SERIAL I/0
functicnal block and the

Demo/Trainer UUT,

podsetup ‘report power' "on" 1 Turn on reporting functions except
pedsetup 'report intr' "off" ! interrupt which is tested in the

podsetup ‘report address' "on" ! BERIAL I/0 test {test_rs232}.
podsetup 'report control' "on"

podsetup ‘report data' "on"

podsetup 'report foreing' “on”

gfi clear ! CLEAR ALL GFI RECCMMENDATIONS
connect clear "yes" ! Clear all connect Infermation,

execute test_bus{}

execute test_rom{}

execute test_ram{)

execute test_pla(}

execute test rs232()

execute test video()
end program

Figure 5-4: Go/No-Go Test for Demo/Trainer UUT

5-6

The Go/No-Go program is the highest lewvel of the functional testing
and fault hangdlers, The purpese of the Go/No-Go test is to determine
whether the UUT is good or bad. This program executes six programs
which test the six major functional blocks {Microprocessor Bus, ROM,

test_bus 0 Test the microprocessor bus,

test_rom () Test the ROM functional block

test_ram () Test the RAM functlonal block

Interrupt Circuit functional
biock of the Deme/Tralner UUT.!

test_video () Test the VIDEO clrcuit of the

AT

S

each node on the UUT must be exercised for a thorough
functional test. :

However, activity on each node is not a sufficient evaluation of
test effectiveness. In addition, you need to evaluate how well
your test detects faults in the UUT. This is done by injecting
faults (such as stuck lows, stuck highs, intermittent highs, or
intermittent lows) at each node in the UUT while running your
functional test to see if the test fails. The 9100A/9105A probe
(used as a source) provides a convenient tool for this purpose.

Fault coverage is the percentage of faults that will be detected by
the functional test software. It is often measured as the ratio of
the number of nodes where injected faults can be detected by a
test to the total number of nodes in the UUT. This ratio is
usually expressed in percent. If the fault coverage is not high,
you can analyze the pattern of faults that are not detected to
determine additions to your test program to increase the fault
coverage.

EXECUTING UUT SELF-TESTS | 5.4.

Self-test routines contained in UUT memory can be executed
from the 9100A/9105A by pressing the RUN UUT key at the
operator's keypad and entering the UUT's starting address of
the routine. These self-test routines can also be run from TL/1
programs by using the runuut command. Self-test routines
typically save their test results in UUT RAM. The
9100A/9105A can later read the appropriate RAM addresses to
get these results.

An I/O module can generate one hardware breakpoint (system
interrupt) upon detection of any user-defined combination of
logic-highs and logic-lows on selected I/O module lines, This
feature may be invoked at the operator's keypad (SET I/O MOD
COMPARE WORD command), or through program execution.
Once set up for a breakpoint, the I/O module continuously
monitors the specified lines while other functions (such as RUN
UUT) are performed. When the breakpoint event occurs, RUN
UUT execution halts. A breakpoint message will interrupt any

current system activity, If a program is being executed, it may
redireci the breakpoint message through a fault condition
handler, as described in Section 6 of this manual.

A complete functional test for a UUT might begin with the BUS,
RAM, and ROM tests, followed by execution of UUT self-test
routines. By using RUN UUT breakpoints to detect addresses,
data, and other UUT logic levels, the program can integrate the
UUT's self-tests with 9100A/9105A functional tests.

Some pods can also generate UUT breakpoints without using
the I/O module. For these pods, breakpoint-related softkeys
appear when the RUN UUT key is pressed. Consult your pod
manual for these pod-specific breakpoint capabilities, if any.

EXECUTING DOWNLOADED MACHINE CODE 5.5.

5-8

- After part of the UUT RAM has been tested and found to be

good, machine code can be downloaded to the tested RAM and
executed. The machine code may be downloaded using a series
of WRITE commands or the WRITE BLOCK command, which
downloads an entire Motorola-format user file.

After the code is downloaded, you can execute it with the RUN
UUT command, specifying the code's starting address.
Although most testing can be done efficiently through the TL/1
test language, downloading machine code is useful when the
code for a test already exists, when the testing must be done at
machine-code speeds, or when a feature not supported by the
pod must be used as part of the test.

The pod's microprocessor bus cycles are actually done at full
UUT speed. The 9100A/9105A, however, is often slower than
the UUT. For example, when the system performs a looping
READ, each bus cycle is at full UUT speed but individual read
operations are not done one immediately after the other,

AT

Pt

Section 6
Identifying a Faulty
Functional Block

After the go/no-go test determines that a UUT is faulty, the next
step is to identify the failing functional block. Doing so before
starting to troubleshoot will greatly improve troubleshooting
efficiency because troubleshooting can begin closer to the failure
and will take less time to reach the failing node. In addition,
fault detection will be more accurate because the diagnostic test
can check for special types of faults, such as bus contention,
before troubleshooting begins.

Programs that identify faulty functional blocks are called
diagnostic programs. Diagnostic programs, which are a subset
of troubleshooting procedures, build on the UUT go/no-go test,
functional tests of blocks, and stimulus programs. They are the
last of the four modular levels in programming the 9100A, as
shown in Figure 6-1. In this fourth programming level, fault
condition handlers and gfi hint commands are added to the UUT
go/no-go test to create a diagnostic program that traps faults and
initiates tests of functional blocks that may be responsible for the
fault, thereby isolating the block that is causing the UUT to fail.
In addition, a failing output of the faulty block is identified as a
starting point for backtracing toward the fault that causes the
block to fail. At that point, GFI troubleshooting (the GFI key
on the operator's keypad) can be used to backtrace to the bad
node or component.

6-1

6-2

Level 1

» Stimulus Programs for Nodes

+ Learned Node Responses
from Known-Good UUT

+Nede List and Reference
Destgnator List {(Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

GorNo-Go Test
for the Entire UUT

Level 4

GorNe-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

P

AT

Figure 6-1: Diagnostic Programs (Level 4)

STRATEGY OF DIAGNOSTIC PROGRAMS _ 6.1.

The first step in developing a diagnostic strategy is to draw a
diagram showing the major functional blocks used in the go/no-
go functional test. Next, show all other functional blocks that
provide input to these major functional blocks. Figure 6-2
shows such a diagram for the Demo/Trainer UUT. The figure
shows six sets of functional blocks, one for each major
functional block tested by the go/no-go functional test. The
blocks on the left provide input to the blocks on the right, and
the blocks tested by the go/no-go functional test are on the right
side of each set.

The task of the diagnostic program is to select a failing
functional block for troubleshooting and to generate an
appropriate starting point (or points) where GFI can begin
automated troubleshooting. When a major functional block
fails, you know that one or more outputs of the block are bad.
But it doesn't necessarily mean that the block itself is bad; bad
inputs to the major functional block may be causing the block to
fail. How do you continue from there to isolate the failing block
and select an efficient starting point for GFI?

One diagnostic strategy is to test blocks that provide input to the
failing major block. Isolating the block causing a failure
involves tracing from the right-hand side toward the left, testing
each block in the path until one is found with good inputs and
bad outputs. This strategy works best when the string of blocks
leading up to 2 major block is short. Such is the case for most
of the sets of blocks in Figure 6-2.

A second diagnostic strategy, helpful when you have a longer
string of blocks leading up to a failing major block, is to divide
the blocks in half and begin testing a block halfway between the
first block in the string and the major block at the end. If the
middle block passes, keep dividing the failing string of blocks in
half and testing a middle block. If the middle block fails, test the
blocks to the left starting at the middle block. This second
strategy would be appropriate for the Video set of blocks in
Figure 6-2.

6-3

Bus Bulter

MICROPRQCESSCR BUS

Clock and Reset

Address Decode

RAM

Bus Buifer

Clock and Reset

Microprocessor Bus

Dynamic RAM Timing

Ready Circuit

Address Decode

ROM

Bus Buffer

RAM

Ready Circuit

{continued on the next page)

Figure 6-2: Inputs to Functional Blocks

ROM

A

L

p——

Add.ress Decode

Bus Bulfer

PARALLEL 0

Clock and Reset

Ready Circuit

Address Decode

Bus Buffer

Clock and Reset

Parallet VO

SERIAL KO

Ready Circuit

Interrupt Circuit

Address Decode

Bus Buffer

Serial O

VIDEO

Clock and Reset

Video Contro! Video RAM Video Qutput

Ready Circuit

Figure 6-2: Inputs to Functional Blocks- continued

Another strategy, used when a fault is likely to be near a failing
output pin of the failing major block, is to begin GFI backtracing
directly from the failing output pin, without checking the inputs
to the major functional block.

Diagnostic programs can speed up troubleshooting by starting
GFI closer to the actual problem. On the other hand, isolating
the failure to a very small area may require more time than is
saved in reduced troubleshooting time. There is a balance
between isolating the failure to a very small area and doing no
isolation of the failing circuit. Decisions on when to start GFI
and when to isolate the failure to a smaller area depend on your

UUT and the relative cost of additional programming effort

compared to the resulting savings in troubleshooting time.

IMPLEMENTING THE STRATEGY FOR
DIAGNOSTIC PROGRAMS 6.2.

6-6

Figure 6-3 shows a typical process to implement a diagnostic
program strategy. The diagnostic program executes a functional
test for each major functional block. If a fault condition is
generated during the test, the major functional block is possibly
faulty. To verify this suspicion, the inputs to the functional
block are checked. If the inputs are all good, then the major
functional block is indeed faulty. However, if one of the inputs
to a major functional block is not good, the fault probably lies in
the functional blocks which provide input to the major functional
block. In this case, the input functional blocks become the
suspect blocks and their inputs are checked. This process
continues until a block is found with all good inputs but a bad
output.

When this faulty functional block is identified, appropriate GFI
hints are generated to indicate the node (or nodes) where GFI
should start troubleshooting.

P

Select a Major
Functional Block
{Cannot beTested

Yes

Indirectly by
Testing Another
Functional Block)

Y

E xecute the Functional
Test for the Major
Functional Block

Fault
Condition?

Any Functional
Blocks Not Yet
Tested Diractly
or Indirectly?

No

Y

(UUT Passes)

The Functional
Block Is Suspact

h

Test Every Functional
Block which Provides

Inputs to the Suspect
Functional Block

Fault

Condition?

The Failure Is Within
the Suspect Functional
Block

A

Generate GF|
Hints or Start

GFI

(UUT Fails)

Figure 6-3: Identifying a Faulty Functional Block

6-7

DIAGNOSIS USING FAULT CONDITION
HANDLERS 6.3.

Fault condition handlers provide the means for communicating
9100A/9105A functional test failure information to the operator
for keystroke troubleshooting or to GFI for automated
troubleshooting.

What are Fault Condition Handlers? 6.3.1.

6-8

A fault condition is generated or "raised” in one of two ways:

® A built-in TL/1 function is run, and the UUT does not
respond correctly. For example, a microprocessor address
line cannot be driven to logic-high during a read or write
operation.

®* A fault command is executed in a TL/1 program.

A fault condition handler is a TL/1 procedure, called by a fault
condition of the same name, that responds in some way to the
fault condition. For example, the handler might try to determine
the cause of the fault.

Each fault condition has a name. Fault conditions created by
built-in functions have defined names and parameters, listed in
TL/1 Reference Manual appendices. Fault conditions created by
your fault commands may have any name, including the same
name used by the built-in functions.

When a fault condition is raised, the system halts execution of
the current program. If your program contains a fault condition
handler with the same name as the fault condition, the program
statements inside the handler are executed. After the handler is
finished, execution of your program resumes where it left off.

If your program does not contain an appropriate fault condition
handler, execution of the program terminates and its calling
program (if any) is searched for a fault condition handler with

Pl

e,

the specified fault condition name. This process continues until
an appropriate handler is found. If no handler is found, a fault
message will appear on the operator's display.

For more information on fault condition handlers, see Section
3.7 of the Programmer’s Manual.

Using Fault Condition Handlers 6.3.2.

The UUT go/no-go test should test only those functional blocks
that cannot be tested indirectly by other blocks. When the
£0/no-go test detects a failure, the diagnostic program is used to
identify the failing block and to identify a failing node as a
starting point for troubleshooting,

To use fault condition handlers in a diagnostic program, you
need to do two programming tasks for each handler:

1. Use the fault command (with an appropriate fault
condition that you create) to generate the fault
condition if a test (or part of a test) of a functional
block fails. For example, if the diagnostic program
finds that the functional test of the video output
circuitry fails, you might choose to generate a fault
condition named video output,

2. Create a handler for this fault condition. The handler
should check other input blocks to isolate the failing
functional block. It might also do further testing to
narrow down the zone of failure within a failing
functional block. And the handler will generate the
appropriate starting point for GFI by using the gfi
hint command.

A Diagnostic Test Example 6.3.3.
Suppose the video circuitry is failing. Testing begins with

execution of the go/no-go2 program, listed in Section 6.4 of this
manual, This program has many fault condition handlers at the

6-10

beginning, and it has six execute statements at the end that
actually execute the go/no-go test. Each of these executre
statements executes a different functional test program for a
major functional block. And each of these functional test
programs include the necessary fault condition handlers to
generate GFI hints appropriate for the fault condition
encountered (a listing for each of these programs is contained in
Section 6.5 of this manual). The GFI hints are very important to
the troubleshooting process; they are the means by which the
9100A/9105A communicates the results of its functional testing
to provide efficient starting points for GFI troubleshooting.

Suppose that the failing video circuitry does not affect any of the
six major functional blocks except test video2. In this case,
test_bus2, test_rom2, test_ram2, test pia2, and test rs232b all
pass, but fest_video? fails. The test video2 test is really the test
of the Video Output functional block. If this test fails, a video
fault condition is generated (suppose the video scan fault
condition is generated). Since the fest video2 program has a
handler for video_scan, the program statements inside this
handler are executed. -

Once the hints to GFI are passed, execution of the video fault
condition handler (video_scan) ends, the test program
(test_video2) ends, and the diagnostic program (go nogo2)
ends. A message appears on the operator's display saying that
GFT hints have been generated, and that GFI should be run.

The diagnostic program is structured so that only one failure is
isolated at a time. The problem should be isolated with GFI and
fixed when it is detected. It is appropriate to repair an isolated
fault before testing any further, since apparent multiple failures
often result from one physical problem on a board. For
example, a short between two nodes can appear as two failures,
After a fault has been repaired, the diagnostic program should be
run again to find other faults or to verify that no more faults can
be found.

I

DIAGNOSTIC PROGRAM FOR THE

'DEMO/TRAINER UUT

program go_nogo2

1
'
1
1
1
!
1
1
1
r
T
T
1
1
1
1
!
1
1
!
1
1
1
t
T
1
1
1
1
1
1
1
!
1
1
'
'
1
1
1
!
!
¢
!
1
1
1
I
1
1
1
1
!
1
T
1

The Go/No-go program is the highest level of the functional testing
and fault condition handlers. The purpose of the Go/No-go test is to !
determine whether the UUT Is good or bad. Thls program executes six
programs which test the six major functional blocks (Microprocessor !
Bus, ROM, RAM, Parallel I/0, Serlal 1/0, and Video). By testing the
six major functional blocks, the remaining functional blocks are
indirectly tested.

If the Go/No-go test detects a faulty UUT, further fault isolation is !
performed to lsolate which circult is causing the failure. The fault !
conditlon handlers in the Go/No—go program and the other functlonal
test programs perform the fault isolation, The fault condition
handlers included in this program are handlers for those fawlt
conditions whlch may occur during any of the six major functional
tests.

r

1

1

1

I

1

1

t

r

1

1

!

I

1

1

1

The major functional test programs include fault condltlon handlers I
for fault conditlons which are only generated within that program. !
The first three programs (TEST_BUS, TEST_ROM, and TEST RAM) use !
built-in TL/1 tests and the built-in fault condition handlers that !
are documented in the 9100/9105A TL/1 Reference Manual. + 1
t

I

1

1

1

1

1

1

1

r

I

1

1

1

1

1

1

I

TEST PROGRAMS CALLED:
test_bus2 Test the microprocessor bus,
buffered bus, and address
select logic.

test_rom2 Test the ROM functional block !
of the Demo/Trainer UUT,

test_ram2 Test the RAM functional block !
of the Demo/Trainer UUT.

test pla2 Test the PARALLEL I/O
functional block of the
Demo/Tralner UUT,

test_rs232b Test the SERIAL I/0 functional!
bleck and the Interrupt
Circuit functional block of
the Demo/Trainer UUT.

test videc2 Test the VIDEO circuit of the
Demo/Tralner UUT.

recover The 80286 microprocessor has a!
bus controller that ls totally!
separate from the pod. In !
some cases, the pod can get !
out of sync with the bus !
contreller., The recover 1
program resynchronizes the ped!

and the bus controller. !
1

6.4.

1 FUNCTIONS CALLED: !
! retry access (access, addr, control} This function iz executed when!
! a pod_timeout_recovered fault !
1 conditlon occurs. This

! function repeats the attempted!
! access that falled and

! determines if the access can
! be sucessfully repeated.
!

1

!

1N

Global Varlables Modified:
recover_times Reset to Zero
I

declare
global numeric recover_times | Count of executing recover(}.

end declare

! GENERAL PURPOSE FAULT CONDITION HANDLERS

1 1
! !
! The built-in fault conditions "pod_addr_tied", “pod ctl tied", I
! "pod data_incorrect" and pod data_tied are generated when the pod !
| detects a stuck or tied line at the ped socket, These fault !
| conditions are not handled because the dlagnostic message for these !
| faults cannot be made better by additional testing. If one of these !
| fault conditions occurs, the built-in fault message will be displayed!
| and the UUT needs to be repalred.

I 1
E !

handle pod forcing active {(mask)
declare string mask
declare global numeric tlo
declare string clear screen = “\1B{2J"
print on tlo ,clear_screen, "POD Foreing Lines Active fault"
fault forcing lines mask mask ! Redirect fault
end handle

handle ped_interrupt_active (mask}
declare string mask
declare global numeric tlo
declare string clear screen = "\1B[2J"
print on tle ,clear screen, "POD Interrupt Line Active fault™

! Get the last two characters of the 64 bit string mask and decode to INTR/NMI

lines = val (mid{mask, len(mask}-3, 2},19)
if {lines and $10) <> 0 then
execute tst_intrpt()
else if {lines and 1} <> 0 then
fault NMI_active
end if
end handle

handle pod misc_fault

fault bad power - ! Redirect fault
end handle

6-12

P

handle pod_speclal
end handie

handle pod_timeout_bad pwr
daclare global numeric tlo
declare string clear screen = "\1B{2J"
print on tle ,clear_screen, “POD timeocut bad power fault™
fault bad_power I Redirect fault
end handle

handle pod timeout enabled line (mask)
declare string mask
declare global numeric tlo
declare string clear screen = “\1B[2J"
print on tlo ,clear_screen, "POD Timeout Enabled line fault*
fault forcing_lines mask mask ! Redirect fault
end handle

handle pod_timeout no elk
declare ¢lobal numaric tlo
declare string clear screen = “\1B[2J%
print on tle ,clear_screen, "POD Timeout No Clock at POD Pin 31"
execute tst_elock(} [Test Clock and Reset
end handle

handle pod_timeout recovered {access attempted, ctl, addr)
declare string access_attempted
declare numeric ctl = SEGDOO000
declare numeric addr = $E0000000
declare global numeric tlo
declare string clear screen = "\1B{2J"
declare global numeric repeated_timeouts

print on tio ,clear_screen, "pod timeout recovered:
podsetup 'erable ~ready' “off"

podsetup 'enable hold* “off"

podsetup 'report foreing' “off"

repeated_timeouts = repeated_timeouts + 1

! DISABLE all lines that can be enabled, retry access, then turn enable
! lines on until the access cannot be repeated. The lines that can be
! enabled on the 80286 are Hold and Ready.

if repeated_timeouts > 10 then
fault dead kerpel
else if retry_access({access_attempted, ctl, addr} falls then
fault dead kernel
else
podsetup ‘enable hold' "op®
if retry access(access_attempted, ctl, addr) fails then
fault hold circuit
else
podsetup 'enable ~ready' "on"
if retry access{access_attempted, ctl, addr) fails then
execute tst decode()
execute tst ready(}
else
print on tlo ,clear_screen
end if
end if
end if
end handle

6-13

handle pod timeout_setup
end handle

handle pod uut_power
fault bad_power ! Redirect fault
end handle

handle iomod dce
end handle

SNRRNSRRR RSN RRNEY!

! Redirected Fault Handlers !
!1|!!||||r||r||1|||1||r|||_|”

11

handle forcing_lines (mask)
declare string mask
declare global numeric recover times

! attempt to recover synchronizatjion between pod and bus controller before
! testing the decode, ready or clock circults. If the recover procedure

| has been executed at least twice, then go ahead and test decode, ready or
! the clock circuit.

if recover_times < 2 then
execute recover ()
else
lines = val (mid{mask, len{mask)-7, B},186)
if {(lines and 1) <> ¢ then
execute tst decode()
execute tst ready()
else if {lines and $10) <> 0 then :
execute tst_clock(} ! Test Cleck and Reset
end 1f

! The status lines HOLD, PEREQ, BUSY and ERROR are not used in the
! Demo/Trainer UUT. Display a message 1f one of these lines is active
! and wait for the condition to be fixed.

loop while (lines and $E2) <> 0
print on tlo ,clear screen
if {lines and 2) <> @ then
print on tlo ,"HCID ls active; Press RESET tc continue”
else if (lines and $20) <> 0 then
print on tle ,"PEREQ is active; Press RESET to continue®
else If (lines and $40} <> 0 then
print on tlo ,"~BUSY is active; Press RESET to continue®
else if (lines and 580) <> 0O then
print on tle ,"~ERROR is active; Press RESET tc continue"
end if
wait time 2000
end loop
end if
end handle

T

.

R

handle bad_power
declare global numeric t2o
declare string clear screen = "\1B[2J"
declare global string messg
print on t2o ,tiessg+"FAULT DETECTED"
loop until (readstatus{)} and $3D00} = D
fall (514}
if {readstatus(} and $3C00) = $3G00 then
print on tle s clear screen, "POD UUT Power™
priant on tlo +"POWER _UP and press RESET on Tralner UUT"
walt time 2000
print on tlo sciear screen, “CONTINUING,.."
else
1f (readstatus({) and $100) <> 0 then fault 'CAP fallure at POD Pin 52'
1f (readstatus() and $400) <> 0 then fault 'POWER fallure at POD Pin 30
1f (readstatus{) and $800) <> 0 then fault 'POWER faillure at POD Pin 62°
1f (readstatus{) and $1000) <> 0 then fault 'GROUND fallure at POD Pin 35*
Lf (readstatus() and $2000) <> O then fault 'GROUND fallure at PCD Pin o
end If
end loop
untested {$14}
end handie

function retry access(ACCESS, ADDR, CTL)
! Retry last access performed using parameters from fault handlers.

nandle ped_timecut_bad pwr
fault
end handle

handle pod_timeout enabled line
fault
end handie

handle pod_timeout_no clk
fault
end handle

handle ped timeout recovered
fault
end handle

handle ped timeout setup
fault
end handle

6-15

declare

string ACCESS

declare numerle CTL
declare numeric ADDR

i1f ADDR <> $E0000000 then
address = ADDR
else 1f CTL <> $E0000000 then
address = CTL

else

address = 0

end 1f

if ACCESS = "READ" then
if read addr address fails then fault
else if MACCESS = "WRITE" then
i1f write addr address, data $ASC3 fails then fault

end if

end function

recover_times = 0
execute recover()

podsetup
podsetup

‘report power' "on"
‘report intr' "off"
podsetup 'report address’ "on"

Recover synchronization between POD
and the 80288 bus controller.

Turn on reperting functions except
interrupts which is tested in the
SERIAL I/0 test (test rs232b).

podsetup 'report control' "on"

podsetup

‘report data‘

nonph

podsetup 'report forcing' "on"

gfi clea
connect

execute
execute
execute
execute
execute
execute

end program

6-16

r
clear "yes"

test_bus2 ()
test_romZ ()
ctest_ramZ ()
test_plaz ()
test rs232b ()
test_video2 ()

! CLEAR ALL GFI RECOMENDATIONS
I Clear all connect information.

e

FUNCTIONAL BLOCK TESTS FOR THE
DEMO/TRAINER UUT DIAGNOSTIC PROGRAM 6.5.

This section contains the following functional test programs,
which are necessary to support the diagnostic program for the

Demo/Trainer UUT: |
test_bus2 Tests the Microprocessor Bus functional
block.
test pia2 Tests the Parallel IO function block.
test_ ram2 Test the RAM functional block.
test_rom2 Tests the ROM function block.

test rs232b Tests the Serial /O function block.

test_video2 Tests the video circuitry (the Video
Control, Video RAM, and Video Output
functional blocks).

These programs are much like the programs by the same name
found in Section 4 and used in Section 5 of this manual.
However, these programs also contain the necessary fault
condition handlers and gfi hint commands to tell GEI where to
start backtracing if the functional block fails.

6-17

program test bus2

This program tests the unbuffered microprocessor bus, performs an

1 access at each deccded address

1. data bus for bus contention (where a component outputs onto the data
bus at incorrect times). If bus contention is detected then the
program TST CONTEN 1s executed.

! enable line conditions on all the components on the buffered data bus.!

tst_conten (addr, data_bits)

Local Censtants:
ZERO_AT_ROMO
ZERO_, AT ROML
10 BYTE
MEM_WORD

: Local Variables Modified:

X
ITIII‘IIl'fl'l?llllllIII'IIIIIIIII

r
¥
t
1
1
1
!
1
1
!
I TEST PROGRAMS CALLED:
1
]
1
1
1
1
1
1
1
1
'
t
1
1

lllll‘llII!III’I'llIlIlt]lIIlllIIIIIICIIIIlIlIlIII|I?IIllll1|1||ll||l|ll

1|]|Ill|lI|Ill|ll‘lllr!!!‘!!![!![!llIll‘llll|l|||IIIl!!I[JI!I[][!!!!’IIIIITI

declare numeric ZERQO AT ROMO =
declare numeric ZERQO_AT_ROM1

Setup Statements

podsetup 'enable ~ready' "on"
podsetup 'report forcing' "on'

tiiet
! FUNCTIONAL TEST of the Mlcroprocessor Bus.

ERLRLILERLN I bRt b ettt Eintin

of the buffered bus, and checks the

TST_CONTEM checks for incorrect

Test for bus contention on
the data bus by checking the
enable lines of all devices
on the data bus,

Address of zero data in ROMO
Address of zero data in ROML
I/0 BYTE address specifier
MEMORY WORD address speclfiler

value returned from a read
IR R R NI N R RN RN R R R RS R RN R A

SEQ02R ! Location in ROMO where 0 exists
SF0022 ! Locatjon in ROMl where 0 exists

IQ BYTE = getspace space “i/o", size "byte"
MEM WORD = getspace space "memory", size "word"

testbus addr 0

Test the Unbuffered Microprocessor Bus.

! Test the Extended Microprocessor Bus and Address Decoding.

setspace (MEM WCRD}
read addr 0

read addr $10000
write addr $20000, data ©
read addr $30000
read addr $E0CO0
read addr $F00CO
setspace {I0_BYTE}
read addr 0

read addr $2000
read addr $4000

RAM BANK O

RAM BANK 1

VIDEQO RAM {write only}
INTERRUPT POLL

ROM BANK 0

RCM BANK 1

VIDEO SELECT
RS232 SELECT
PIA SELECT

satspace (MEM WORD)
x = read addr $50000
if x <> SFFFF then

Test for Bus Contentlon driving lines low by accessing unused address space

! SPARE-2 ADDRESS SPACE
execute tst_conten{ $50000, cpl{x) and S$FFFF)
return

end if

Test for Bus Contentlon driving lines high by reading and writing RAM

If failure then check for bad RAM by readlng zeros from 2 other devices.
write addr 0, data 0
X = read addr ©

| WRITE and READ RAM addr 0
1f ®x <> ¢ then

! If falls then check for bad RAM
! by reading 0's at RCMO and ROM1
If (read addr ZERQ AT ROMO) <> O then
. if (read addr ZERO_AT_RGML) <> 0 then
execute tst_conten{ 0, x)
return
end if
end if
end 1f

end program

6-19

program test pia2

| FUNCTIONAL TEST of the PARALLEL I/O functicnal bleck.

This program tests the PARALLEL I/O functional block of the
! Demo/Trainer. The two LEDs and the four pushbutton switches are
1 tested. The test operator 1s prompted to visually lnspect the IEDs
| a3 the LEDs count & series of numbers,

1
1
1
1
1
1
!
t TEST PROGRAMS CALLED:

1 abort_test (ref-pin} If gfi has an accusation,

! display the acrusation;

! otherwlse create a gfi hint
! for the ref-pln and terminate
! the test program (GFI begins
! troublesheot.ing) .

1

1

r

1

1

1

]

1

1

1

! TEST FUNCTIONS CALLED:
keys (key_number) Test Deme/Tralner pushbutton
key key number. Prompt test
operator to push the key.

leds (led addr, led name) Test Demo/Trainer LED led_pame!
which is driven by the PIA and!
has the address led_addr. !

declare global numeric tlb 1 Terml buffered output & lnput
declare global numeric tii ! Terml unbuffered input

FAULT CONDITION HANDLERS: !
These fault conditlons are generated by the this program., These !
handlers perform isolation of the faulty circuit., The handlers !
which isolate the LED problems perform a GFI test on the LED. !
If all signals are good and the test operator has failed the LED,!
then the LED is accused as a bad component.

handle 'PTA LED A falled'
declare global string rev
declare string newline = "\nl"

1f gri test "U32-1" falls then
abort_test ("032-1")
else
if gfi test "U33-1" fails then
abort_test ("U33-1"y
else if gfl test "U33-13" fails then
abort_test ("0U33-13")
else 1f gfi test "U33-10" fails then
aport_test ("U33-10")
else if gfi test "U33-8" fails then
abort_test ("U33-8")
else if gfi test “U33-7" fails then
abort_test {"U33-7"}
else if gfl test "U33-2" fails then
abort_test ("U33-2"}

6-20

P

P

else If gfi test "U33-11" fails then
abort_test {"U33-11"}
else if gfl test "U33-6" fails then
abort_test ("U33-6"}
else
print rev, newline,"LED A IS BAD", newline, “REPLACE LED A"
end if
end if
end handle

handle 'PIA LED B failed®
declare global string rev
declare string newline = "\nl™

if gfl test "U46-1" fails then
abort_test ("U46-1"})
else
if gfi test "U47-1" falls then
abort_test ("U47-1"}
else 1f gfi test "U47-13" falls then
abort_test (“U47-13%)
else if gfi test "U47-10" fails then
abort_test {"U47-10"}
else 1f gfi test "U47-8" fails then
abort_test ("U47-8")
else if gfi test "U47-7" falls then
abort_ﬁest("Ud?—?"}
else {f gfl test "U47-2" fails then
abort_test ("U47-2)
else if gfi test "U47-11" falls then
abort_test {"U47-11")
elze If gfi test "“U47-6" fails then
abort_test {"U47-6")
else
print rev, newline, “LED B IS BAD", newline, “REPLACE LED B"
end if
end if
end handle

handle 'PIA KEY 1 failed!
abort_test {"U31-14"}
end handle

handle 'PIA KEY 2 failed®
abort_test ("U31-15")
end handle

handle ‘PIA KEY 3 failed*
abort._test ("U31-16")
end handle

handie 'PIA KEY 4 falled'

abort_test {"U31-17"}
end handle

6-21

functilen keys (keynum)

declare numeric keynum ! Number of key to test.
declare string norm = "\1B[0m" ! Normal video escape string
declare string rev = "\1B(0;7m" ! Reverse video escape string

declare string entry
declare string fail = "
declare global numeric tik
declare global numeric tli

mask = setbit (keynum - 1)

loop until fall = chr(SD}) ! loop until YES key
print on tib ,"\nlPress ", rev," UUT KEY ", Keynum," “,norm," pushbutton"
print on tlb ,"Press any 9100 key if test is stuck"
loop untll (poll channel tli, event “ipput®) =1
if ((read addr $4004} and mask} = 0 then return

end leop

loop until [poll channel tll, event "input") =0 ! Flush input buffer
input on tli ,entry

end loop

print on tlb ,"\nlPress ",rev," YES ",norm," to fail KEY ", keynum," test, "
print on tlb ,"Press “+rev+” NG "+norm+" to continue key test,"
input on tli ,fail

end locp

print on tlb ,"\nl\nl"

fault ! Fail Key test (set termination
end function ! status of function to fail.

function leds(led_addr, led_name)
declare numeric led_addr
declare string led name
declare string key

declare string norm = "\1B{0m"
declare string bold = "\1B[1m"
declare string rev = "\1B[Tm"
declare string clear screen = "\1B[20"

declare string no_auto_linefeed = "\1B[20h"
declare global numeric t1i
declare numeric array [0:10) pumbers

numbers [0] = $CO numbers [3] = $92
nunbers [1] = $F9 numbers [6] = 582
numbers [2] = $A4 rumbers [7] = S$F8

numbers (3] = $BD
numbers [4) = $59
NO = chr{$7F)

nunbers (8] = $80
numbers [9] = $98
YES = chr{ 5D)

P

print norm, clear_screen, "Watch LED ", led_name, " count”

print "Press ", rev, " ENTER ", norm, " key tc start LED counting."
input key

print clear_screen

for 1 =0 to 9
write addr led addr, data numbers [i)
walt time 500

next

6-22

P

L

write addr led addr, data $7F
print clear screen, "\1B{201"
print "\1B[1;1fDid LED *, led name, " display ALL segments off, then"
print "\1B(2;1fdlgits 0 to 9, then only the Decimal Point 2"
print "\1B[3;fpress: "+rev+" YES "+norm+™ or "+rev+™ NO “+norm
loop until key = YES or key = NO
input on tli ,key
if key = NO then fault
end loop
write addr led addr, data $FF \ print no_auto_linefeed, clear _screen

end function

tlb = open device "/terml", as “"update", mode "buffered"
tli = open device “/terml", as “ipput", mode “unbuffered”
execute pia_init ()

if leds (54000, "A") fails then fault 'PIA LED A failed' \ return
if leds($4002, "B") falls then fault 'PTA LED B falled' \ return

if keys{l} fails then fault 'PIA KEY 1 falled* \ return
if keys{2) fails then fault 'PIA KEY 2 failed' \ return
Lf keys(3) fails then fault 'PIA KEY 3 fajled' \ return
if keys{4) falls then fault 'PIA KEY 4 falled' \ return

.

end program

program test ram2

Illllllllllll1I'Illl'llllllllll1l|rll1l|l1l

FUNCTIONAL TEST of the RAM functional bl

TL/1l testramfast command is used to test
generated,

TEST PROGRAMS CALLED:

f
!
!
t
!
1
!
1
1
1 abort_test (ref-plnj)
1
1
1
1
1
1

(AN
ock.

This program tests the RAM functional block of the Demo/Trainer. The !
the RAMs. If the RAMs are
found to be faulty, then cne of twelve built-in fault conditions is

If gfi has an accusation,
display the accusation;
otherwise create a gfi hint
for the ref-pin and terminate
the test program (GFI kegins
troubleshoot ing}.

IllIf||1|rll|!|l|||1|l|l||l||l1| !![]!![!![!lII!IlI’lI1lIlI|III|IIIII!!!

AN R RN R R R A R R R RN R R R A R R AR R R R R N R R AR R R RN R R R R R R AR R R RN R R AR N

! FAULT CONDITION HANDLERS:

! Buillt-in testramfast fault condition handlers

handle ram addr_fault (data mask)
declare numeric data mask
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRAM addr llne fault detected,
fault ram_component data bits data mask
end handle

handle ram addr addr tled (data_mask)
declare numeric data_mask
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRAM addr lines tied detected,
fault ram_component data_blts data mask
end handle

CONTINUING"

CONTINUING"

handle ram addr_data_tied (data_expected, data)

declare numeric data expected

declare numeric data

declare string clear_screen = "\1B[2J"
print clear_screen

print "\nlRAM addr-data tied detected,

CONTINUING™

fault ram component data bits (data xor data_expected)

end handle

handle ram addr data tied unconfirmed (data_expected, data}

declare numeric data expected

declare numeric data

declare string clear_screen = “\1B[2J"
print clear screen

print "\nlRAM addr-data tied detected,

CONTINUING"

fault ram_component data_blits (data xor data_expected)

eng handle

6-24

PanN

r—

handle ram data_data tled (data expected, data}

declare numeric data_expected

declare numerlc data

declare string clear screen = “\1B[2J"

print clear screen

print *\nlRAM data llnes tied detected, CONTINUING"

fault ram_component data blts (data xor data_expected)
end handle

handle ram data fauwlt (data}
declare numeric data
declare string clear screen = "\1B[2J"
print clear_screen
print "\nlRAM data line fault detected, CONTINUING"
fault ram component data_bits data
end handle

handle ram data incorrect (data_expected, data)

declare numeric data expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print “\nlBAD RAM data detected, CONTINUING"

fault ram component data_bits (data xor data_expected)
end handle

handle ram data high tied (data expected, data)

declare numeric data expected

declare numeric data

declare string clear screen = "\1B[2J"

print clear screen

print “\nlRAM data tied high detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram data_low tied (data_expected, data}

declare numeric data_expected

declare numeric data

declare string clear_screen = "\lB[2J"

print clear screen

print “\nlfAM data tied low detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram cell cell tied {data_expected, data)

declare numerlc data expected

declare numeric data

declare string clear screen = "\1B{2J"

print clear screen :

print "\nlRAM cells tied detected, CONTINUING"

fault ram component data bits (data xor data_expected)
end handle

handle ram cell low tied (data_expected, data)

declare numeric data_expected

declare numerlc data

declare string clear_screen = "\1B[2J"

print clear screen

print "\nlRAM cell tied low detected, CONTINUING"

fault ram_comporent data bits {data xor data_expected)
end handle

6-25

Redirected fault handler

The RAM block can fail if a problem exists with the ready clrcoult,
S0 test the ready clrcult, then if the ready ecircuit is good, use

handlers to test the falling RAM IC,
test the data bus at the bus buffers,
will detect any prcoblem in the data bus}.

If the RAM IC ls good then

1

t 1
! |
! !
! !
1 the data bits parameter passed from the testramfast built-in fault !
1 !
1 (Testing the data bus buffer !
1 1
! !

!!!E!!!lr1lllllllll!!!!!!!lfll!!![!III'III1Il|llr||l||||1|||I!!!!!!!!!!!

handle ram_component (data_bits}
declare numeric data bits
declare string array [0:315] ram ic

ram ic[0] =
ram ic[?] =
ram ic[4] =
ram _ic[6}
ram ic([8] =
ram ic(10)
ram ic(12}
ram ic(14]

nys5e
nys3In
nys1”

= NJ49m

ny41e
w3gn
37
ny3sn

t If ready clrcult is

ram ic(1]
ram ic(3]
ram_lc(5}
ram_1c[7}
ram_lc{9)
A\ ram ic[11]
\ ram_ic[13)
A\ ram_1lc[15)

Pl

untested, then

= IIU54II

= nggan
= ngsO"

ugagn

= ng4gn

w3gn
36

= ng34n

check Ready circuit

if (gfi status "Ul-4") = "untested" then

if gfi test "Ui-—4~

end if

! Check highest crder ram that is failing, using ram ic array to get

if data _bits <> 0 then

bad ram ref = ram ic[msb(data bits}} + "-1¢

falls then abort test ("Ul-4")

U5,
us3,
us1,
ud9,
v4l,
U39,
uaz,
U3s,

if gfi test bad_ram ref falls then abort test (bad ram ref)

end if

! Check Data Bus buffers,

if gfi test "03-24

end handle

fails then abort test{"U2-2")
1f gfi test "023-2" fails then abort_test {"U23-2"})

Us4
Usz
us0
u48

u3B

U3é
U34

refname,

! Setup

podsetup 'enable ~ready' "on"
podsetup 'report forcing*® "on"
setspace space (getspace space "memory",

1 Main part of test

testramfast addr O, upto $1FFFE, delay 250, seed 1

end program

6-26

slze "word"}

o,

program test_rom2

FUNCTIONATL, TEST of the ROM functional block.

generated.

TEST PROGRAMS CALLED:

troublesheoting}.

! FAULT CONDITICN HANDLERS:
[Built-in testromfull fauit conditicn handlers
!

handle rom sig_incorrect (addr)
declare numeric addr
declare string clear screen = “\1B{2J"
print clear screen
print "\nlBAD signature detected, CONTINUING"
fault rom_component addr bits addr
end handle

handle rom addr_fault (addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRom address line fault detected, CONTINUING"
fault rom_component addr bits addr
end handle

handle rom _addr addr tled (agdr)
declare numeric addr
declare string clear_screen = "\1B[2J"
print clear screen
print "\nlRom address line tled detected, CONTINUING"
fault rom_ component addr _bits addr
end handle

handle rom data high tied all (addr)
declare numeric addr
declare string clear screen = “\1B[2J"
print clear screen
print "\plRem data all high detected, CONTINUING"
favlt rom component addr bits addr
end handle

handle rom data_low tled all {addr)
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print "\nlRom data ail low detected, CONTINUING"
fault rom_component addr bits addr
end handle

This program tests the ROM functional block of the Demo/Trainer.
TL/1 testromfull command is used to test the ROMs. IF the ROMs are
found to be faulty, then one of seven bullt-in fault conditions is

abort test (ref-pin) I1f gfi has an accusatlon,
display the accusation;
otherwise create a gfi hint
for the ref-pin and terminate
the test program (GFI begins

6-27

handle rom data fault (addr}
declare numeric addr
declare string clear screen = “\1B{2J"
print clear screen
print "\nlRom data line fault detected, CONTINUING"
fault rom component addr blts addr
end handle

handle rom data_data_tled (addr}
declare numeric addr
declare string clear screen = "\1B[2J"
print clear screen
print “\nlRem data lines tied detected, CONTINUING"
fault rom component addr bits addr
end handle

! Redirected fault condition handler:

! Use failing address bits parameter passed from testromfull fault

1
!
!
! condition handlers to gfi test the ROM bank that falled. !

handle rom component {addr bits}
declare numeric addr_bits

if addr bits >= $F0000 then
if gfi test "U27-1" fails then abort_test ("U27-11") \ return
if gfi test "U28-1" fails then abort_test (“U28-11") \ return
else ”
if gfi test "U29-1" fails then abort_test ("U29-11"} \ return
if gfi test "U30-1" fails then abort_test {"U30-11"} \ return
end if
end handle

! Setup.
podsetup ‘enable ~ready® "on"
podsetup ‘report foreing' "on"
setspace space (getspace space "memory", size "word"}

1 Main part of Test.

testromfull addr $F0000, upto $FFFFE, addrstep 2, slig $156F
testromfull addr $E0000, upto SEFFFE, addrstep 2, sig $B61E

end program

Pl

6-28

S

pregram test rs232b

..... SRR NN R R N R NN R NN R R NN R R NN AN AR R NN R R Y]
FUNCTIONAL TEST of the SERIAL 1/0 functional block.

! This program tests the SERIAL I/0 functional block of the Demo/

! Tralner. The two RS-232 ports are tested by setting three Dip
Switches to loop back the two ports (SW4-4, SW4-5 and SW6-4 loop back
ports A and B). The SERIAL I/0 functlonal block also outputs two
interrupt request signals. This program also checks the interrupt
clroultry.

!
H
H
!
!
!
I
f
|
!
TEST PROGRAMS CALLED: 1
abort_test (ref-pin} Call fall for reference name 1
then if gfl has an accusation 1

display the accusation else !

create a gfl hint for the !

ref-pin and terminate the test!

program (GFI begins trouble- !

shoot ing}). !

I

1

1

1

1

1

Interrupt acknowledge cycles
and returns first interrupt
vector found on data bus.

rd_cscd 3] POD PROGRAM returns the 24 bit!
interrupt cascade address that!
was found on the address bus !
during the last interrupt
acknowledge cycle.

rd_rearm {} PCD PROGRAM returns the most
recent interrupt vector and
rearms the pod to respond to
the next interrupt.

1
I
!
1
1
1
i
! !
! FUNCTIONS CALLED: !
sync_pbuffer (address, data} Synchronize FIFQ buffer in !
DUART to be last byte recejved!

Recelve buffer is located at !

the value of address. The '

data in data is written to the!

DUART and then read until it !

appears in the FPIFQ or count !

expires. |

I

H
!
!
I
I
1
1
]
I
1
1
1
1
1
1
1
]
[
! fre_int {} POD PROGRAM forces repetitlve
1
1
1
1
1
1
1
1
1
1
I
1
1
1
]
1
1
H
t
t
r
I
1
1
1

III|r1llI|r1lll|l1llfll|llll|f|| RSN S R N R A R RN RN NN

! Maln Declarations : 1

declare
string q ! used to get input from keyboard
string rev = "\1B[0;7m" | Reverse Videc escape sequence
string norm = "\1B[Om" ! Normal Video escape sequence
end declare

6-29

frosrrprrnpriteee {
TAULT HANDLERS !
These fault conditions are generated by the this program. These !
!

1

]

1
1
! handters verify the failure using the Probe or I/0 Module and
1
1

then pass control to GFI.
RS R RN RN R R N R N N R R RN AR R R R R R R NN R RN R R R R R A RN R D RN R R RN T S

handle *'R$232 Port A failed'
1f gfi test "Ul1-35" falls then abort test ("U11-35%)
end handle

handle 'RS232 Port B falled®
1f gfil test "U11-5" falls then abort_test ("Ull-5")
if gfl test "P11-11* fails then abort_test {"Ull-11"}
end handle

handle *Interrupt failed®
if gfi test "U10-2" fails then abort_test (*(10-2"}
if gfi test "U20-9" fails then abort_test {("y20-9")
end handle

function sync buffer(address, data }
declare numeric address
declare numeric data

! Synchronlze FIFO buffer in DUART. Wrlte and then read untll correct data
! is returned or count has explred.

write addr address, data data ! Transmit Data 31 on port A
walt time $200
ent =0 \x=20
loop until x = data or ent > 3
X = read addr address
cnt = cnt + 1
end loop
end functlon

! FUNCTIONAL TEST of the SERIAL I/O Functional Biock.

1I|I!!!II‘IIIIIIIII(IIIIII'III!!!!!I!II‘IIIIITIIIIIIIIIIIIIIIII?IIllflIlII

! Set Interrupt acknowledge cycles on and use the 80286
! pod specific pregrams rd rearm(}, frc int{} & rd_csed().

podsetup 'report lntr*' "off"

podsetup 'intr_ack on' ! Enable Interrupt Ack. cycles
option = getspace space "i/o", slze "byte"

setspace {option)

execute check_loop(}

execute rd_rearm(} ! Clear interrupts

6-30

P

T

o

! Main part of Test., Verify DUART port A.

sync_buffer{ $2006, 561 } ! Synchronize FIFO in DUART for port A
write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
1f ({read addr $2002) and $F) <> $D then fault 'RS232 Port A falled® \ return

if (read addr $2006) <> $55 then fault 'R$232 Port A failed' \ return
write addr $2006, data $55 ! Transmit Data 31 on port A

wait time $200
if {(read addr $2002) and $F} <> $D then fault 'RS232 Port A failed' \ return

1f {read addr $2006} <> 555 then fault 'R$S232 Port A failed' \ return

! Verlfy DUART port B and interrupts.,

sync_buffer{ 52016, $6l1) ! Synchronize FIFQ in DUART for port B
write addr $201E, data $FF ! set output port low
write addr $2016, data 531 ! Transmit Data 31 on port B

if fre int{} <> $22 then fauwlt 'Interrupt failed' \ return

if rd cscd{} <> $2016 then fault ‘Interrupt failed' \ return

1f (readstatus(} and 8) <> 8 then fault 'Interrupt falled' \ return
if (read addr $2016} <> $31 then fault 'RS232 Port B falled' \ return
if frec_int{) <> $27 then fault 'Interrupt failed' \ return

write addr $201C, data $FF
if {{read addr $201A} and 2} <> 0 then fault 'RS232 Port B falled' \ return

end program

6-31

program test_video2

RN AR R R R RN Ry RN R R R SRR AR R R R AR R R N A R R R AR NN
FUNCTIONAL TEST of the VIDEC functional block

This program tests the VIDEC functional block of the Demo/Trainer.

The video test uses the gfl test command to run stimulus programs and
to check the outputs of the Video clrcuit against the stimulus program
response files. The gfl test command returns a passes status if all
the measured results from running the stimulus programs match the
response flles. Otherwlse the gfl test command returns a fails
status,

]
!
1
1
t
t
1
1
I
I
I
TEST PROGRAMS CALLED: !
abort_test ({ref-pin} If gfi has an accusation, t
display the accusation; !

otherwise create a gfi hint !

for the ref-pin and terminate !

the test program (GFI begins I

troublesheoting). I

t

tst videtl () Test program to test the video!

- control functional black !
outputs. Returns passes [
termination status if f
functional block is good else !
return falls termination !
status, !
]

]

|
1
I
r
L4
1
1
1
1
|
1
!
]
!
1
1
1
1
1
1
I
I
t
t
1
1
! !
! tst_vidram ({} Test program to test the video!
! RAM functional block ocutputs. !
! Returns passes termination !
! status if functional block is !
t good else return falls !
t terminatlon status. 1
1 1

1
! FAULT CONDITION HANDLERS: !
! These fault condltions are generated by the thls program. These |
! handlers isolate the failure in the video elrcait to the Video !
! control section, Video RAM section or the Video cutput section., !
! once the falling Video subsection has been identified, then GFI !
! is started. !

handle video_output
| TF Video Control section is bad, tst_videctl will start GFL.
if tst_videtl({) fails then return
! IF Video RAM section is bad, tst_vidram will start GFI.

if tst_vidram() fails then return

| Video Contrel and Video RAM have passed. Video Out is bad. Start GFIL.

abort_test ("J3-9")
end handle

6-32

e

T

handle video scan

gfi hint "J3-g

gfi hint "g3-9"

fault 'gfl hints generated' ' please run gfi’
end handle

SRR R RN RN R R R R R RN R R R R R R R R R R R R R N E NN

1
of the VIDEO Functicnal Block. s !
1

! Setup and initiallieation.

connect clear "yes"
podsetup 'enable ~ready' “on"
print "\nli\ni"

1 Maln part of Test.

if gfi test "J3-8" falls then fault video scan \ return
if gfi test "J3-9" falls then fault video_scan \ retuorn

if gfil test "U78-11" fails then fault video_scan \ return
if gfi test "U76-28" fails then fault video_output \ return
if gfi test "U76-29" falls then fault video_output \ return
1f gfi test "J3-7" fails then fault video cutput \ return

end program

6-33

6-34

(This page is intentionally blank.)

T

T

Section 7
Troubleshooting

After a failing functional block is isolated with a diagnostic
program, Unguided Fault Isolation (UFI) or Guided Fault
Isolation (GFI) troubleshooting can be used to backtrace to the
bad node or component.

UNGUIDED FAULT ISOLATION (UFI) 7.1,

UFT troubleshooting is valuable when you need experience with
stimulus programs before expanding to the GFI environment. It
lets you use stimulus programs to determine whether a node is
good or bad, without having to enter a node list for the UUT.

UFI is used in a manner similar to GFI: the GFI key on the
operator's keypad begins the process. Unlike GFI, UFI is
designed to test only output pins. When testing with the probe,
the output source for a node can be characterized and the other
points on the node (such as inputs) can be probed looking for
the same response. However, when testing with the I/O
module, only the output pins can be measured because the other
pins on the node are connected to I/O module pins different from
the pins UFI thinks it should be measuring,

When an operator needs to troubleshoot boards before the GEI

database is developed, he can use stimulus programs in UFI

mode while waiting for GFI to be completed. However, he

7-1

needs to understand the UUT since UFI does not recommend
the next location to test.

GUIDED FAULT ISOLATION (GFI) 7.2

The 9100A/9105A's built-in GFI algorithm guides an operator
in diagnosing a faulty circuit to the component or node level
without assistance from a skilled technician,

Once a functional test or larger diagnostic program has generated
a list of suspect nodes, GFI troubleshooting can begin. The
GFI key on the operator's keypad starts the process. GFI
begins with a bad output and tests the suspect node. Nodes are
exercised with a stimulus program and determined to be good or
bad by comparing their measured response to responses learned
from a known-good UUT.

When a node is bad, GFI tests the inputs which affect that node
and recommends which node to test next. .If the output of a
component is bad and all inputs to the component are good, GFI
accuses the component of being bad or the output node of being
loaded. The node may be shorted to another node or a defective
component may be loading the node. If an input is bad and the
output source for that node is good, GFI accuses the node of

having an open circuit.

The GFI capability is general enough to troubleshoot most
digital circuits. To apply GFI to a particular UUT, however,
you will need to supply UUT-specific information to the GFI
database for that UUT. The files used for this database are
summarized in Section 7.5 of this manual and described fully in
the Guided Fault Isolation section of the Programmer’s Manual.

STIMULUS PROGRAMS 7.3.

Stimulus programs are TL/1 programs used by GFI or UFI to
exercise UUT nodes in such a way that responses at the nodes
can be analyzed and compared to responses of nodes on a

P

known-good UUT. A typical stimulus program consists of up

to 6 main parts; _

1. (As required) - Initialize the UUT and define the
measurement device.

2. (As required) - Setup of the pod, probe, or I/O
module.

3. Use the arm command to start the measurement of
the node response.

4. Use any commands necessary to apply the stimulus.

5. Use the readout command to end the measurement of
the node response.

6. (Asrequired) - Restore any conditions altered by the

setup step above (step 2).

Stimulus programs should satisfy three very important criteria:

® The program must be independent, initializing the UUT as
required. This is because GFI can begin backtracing at
any node, and the state of the UUT, prior to running the
stimulus, is unknown. The program must also restore
any adjustments it makes to the calibration offset.

® During stimulus execution, only one pin should drive a
node: that is, during the period between the arm and
readout commands, one and only one pin should be a node
signal source (data should flow in only one direction).

* There should be at least one stimulus program for each
output to the node,

See the "Stimulus Programs" section in the Programmer’s
Manual for more detailed information on stimulus programs.

7-3

STIMULUS PROGRAM RESPONSES 74.

Both UFI and GFI select the appropriate stimulus programs to
exercise a node to be measured and compare the actual response
at the node with a stored response from a known-good UUT.
These responses may be any of the following (or combinations
of them):

¢ CRC Signature,

® Transition Count.

* Frequency.

®* Asynchronous Level History.

¢ Synchronous Level History.

The information below summarizes each of these response

measurements, See the Guided Fault Isolation section of the
Programmer's Manual for more complete information.

Learning Responses Froma
Known-Good UUT 7.4.1,

7-4

The 9100A editor's LEARN function is used to learn a set of
responses measured on known-good UUT nodes. Once a
stimulus program is written to exercise a node, a response file
can be generated. To do this, the 9100A is commanded to learn
responses at a node or set of nodes and the system prompts the
operator to connect the measurement device (probe or 1/O
module) to the component providing the node signal source.
The 9100A makes a series of measurements and determines the
characteristics. It learns the response with three measurements
(early, normal, and late clock or sync events) to make sure the
response is stable and that the measurement can be used as a
reliable characterization of that node. '

Node characterization may use one or more of five
characteristics to determine whether the node is good or bad.
You can select which of the five should be saved in a response

AT

file. GFI and UFI use these saved characteristics to determine
whether a node s good or bad.

CRC Signatures 7.4.2.

It is very important to ensure that a CRC signature used in node
characterization will properly identify all good UUTs, at all
measurement temperatures and power supply levels. A marginal
signature occurs when the measured node changes state near the
clock transition or when the Start, Stop, or Clock signals are not
stable. A marginal signature may appear stable on one UUT and
thereby lead to a false sense of security. Other UUTs may yield
different signatures because of temperature or power supply
variations.

When the 9100A editor learns a signature, it attempts to identify
marginal CRCs by collecting signatures with advanced clock
edges, normal clock edges, and delayed clock edges. If a
signature has the same value for advanced and normal clock
edges, it will be suffixed by a "-" sign. If a signature has the
same value for normal and delayed clock edges, it will be
suffixed by a "+" sign. If all three values agree, the signatre is
displayed with no qualification.

A variable signature results if the Start, Stop, or Enable signals
are irregular, compared to the Clock signal. In addition, since
the Start, Stop, and Clock signals are edge-triggered, unstable
signatures will result if the Start or Stop signal edge occurs at the
same time as the Clock signal edge.

Figure 7-1 shows how to test whether the start/stop interval is
stable. Connect the Clock to the clock signal you want to use.
Connect the probe or I/O module to a logic-high level and
connect the Start and Stop lines to the locations where you
would connect these lines when making the signature
measurement. If the start/stop interval is stable, a constant
number of clocks will occur between the start and stop
condition, and the signature will be constant. If the CRC
signature is not constant, the start/stop interval is unstable.

Start
Signal

Stop
Signal

Start/Stop
Interval

- Clock
{On Falling Edge)

Data
(Logic High)

7-6

I "

Constant number of glock pulses I

Figure 7-1: Testing for Start and Stop Stability

e

Unstable signatures may also be caused by Start or Stop signal
edges which occur at the same time as the Clock signal edge or
by Start or Stop signals which are asynchronous to the selected
clock signal. Use an oscilloscope to determine whether a line is
irregular or whether a timing problem exists between the Clock
signal and the Start or Stop signal.

If unstable signatures are caused by Start or Stop signal edges
which occur at the same time as the Clock signal edge, select the
other Clock edge (+ or -) and use the getoffset and setoffset
TL/1 commands to adjust the measurement timing,

Other Characterizations 7.4.3.

Some circuits are difficult to characterize by a CRC signature.
The node may have regular activity but there might be no signal
which can be used as a clock to gather a consistent signature. In
many such cases, nodes can be characterized by using transition
counts.

The transition count works on asynchronous signals, The
transition count can monitor information that the CRC will not
detect, such as extra transitions between CRC clocks. The
transition count will typically be a range of counts, defined by a
minimum and maximum, that represents the extremes of the
three measurements taken by the LEARN function. Only low-
to-high transitions are counted (not high-to-low). When the
measurement is synchronized to the external lines, the data input
is gated with the enable line, if used. A count of zero will result
if the enable-true window does not overlap the low-to-high
transition of the data.

The frequency of a signal may be more important than its CRC
or transition count. This is especially true for system clocks. If
a system clock is run at 4 MHz rather than 8 MHz, everything
on the board could appear to be good. However, when the
board is plugged into a system, the board running at 4 MHz may
cause a system failure. Frequency is also important for video
signals such as horizontal and vertical sync.

7-7

Level history is an important characterization parameter when
combined with signatures or transition counts. If a faulty node
has the correct timing but swings between ground and an invalid
level for part of the time, measuring asynchronous level history
would detect this fault, which will be missed if only a CRC is
measured.

Consider the case where a node that should go high and low is
stuck on a faulty UUT, Using both CRC and asynchronous
level history to characterize the node will provide more complete
information to the technician who repairs the board. The
operator can see that the line is stuck when it should be
changing.

Level history can be used to detect glitches. If the measurement
period is set so that a signal is either high or low during
measurement, with no glitches, the level history will show only
high or low. If the level history shows both high and low, a
glitch has occurred.

Calibration of the IO Module and Probe . 7.4.4.

7-8

Whenever the pod performs a microprocessor operation, it
generates a synchronization pulse which the 9100A/9105A uses
to measure signatures and clocked levels. The synchronization
pulse can be generated by several devices, including the pod or
an external clock. '

In order for the system to measure critical signals reliably, each
measurement device (I/O modules and probe) must be calibrated
to this synchronization pulse on the system where it will be
used, since each measurement device contains its own
electronics that affect timing. If your tests must be accurate to

_within a few tens of nanoseconds on signal edges, calibration

should be done.

The procedures for calibration are given in the Technical User's
Manual. Calibration should be performed for each measurement
device and for each synchronization mode of that device on the
particular 9100A/9105A system where it will be used. For

P

example, the probe for an 80286-based UUT should be
calibrated to EXT, POD ADDR and POD DATA on the
9100A/9105A where the probe will be used. i

Calibration is UUT-dependent. For this reason, calibration
settings should be saved under the specific directory for that
UUT. If calibration is not performed, default calibration values
will be used. These default calibration values will only work
properly in some UUTs (those which have ample timing margin
or which operate at slow speeds).

Adjusting Sync Timing 7.4.5,

The sync pulse that the measurement devices (I/O modules and
probe) receive from the 9100A/9105A comes either from the pod
or an external clock signal. The pod may provide sync pulses
with different timings relative to microprocessor read/write
operations, depending on the synchronization mode of the pod.
For example, the 80286 pod has POD ADDR and POD DATA
sync modes. The sync pulse in POD ADDR mode is earlier than
in the POD DATA mode. See the timing diagram in the pod
manual for the pod you are using.

Most signals on a UUT can be characterized using the external
or pod sync mode. However, in some cases, the sync pulse
occurs at a different time than when the signal should be
measured.

The getoffser and setoffset TL/1 commands can be used to adjust
the time when a signature or clocked level measurement is made,
relative to the sync pulse. Figure 7-2 shows how this offset is
implemented in the probe or the I/O module. The data to be
measured passes through one delay line and the sync pulse
passes through a different delay line. One of the delay lines is
variable. By adjusting the variable delay line, the data is
measured at a different ttme relative to the sync pulse.

Section 3 of the TL/I Reference Manual contains details about

the getoffset and setoffsetr commands, including the
approximate timing resolutions of the probe and the I/O module.

7-9

7-10

Measurement Line
{Probe Tip or
/0 Medule Line)

Clock or
Sync Pulse

1O Module Line or Probe

Delay Line

Measurement

Hardware

Delay Line

R T e VR TEPVCEERUEPEL

A (R

Results of
Measurements

Figure 7-2: Synchronization-Pulse Delay Mechanism

e

Appendices C and E of the Technical User's Manuq] contain
additional timing specifications for the pod, probe, and J/O
modules. The Supplemental Pod Information Jor 91004191054
Users manual and the pod manuals have more detailed
information about pods,

When a program adjusts the syng¢ timing, the original timing
should be restored at the end of the program. This can be done
by storing the result of a getoffset command, adjusting the
timing with setoffset, and readjusting the timing with setoffser at
the end of the program with the stored getoffset value.

Dynamic RAM circuits usually require sync timing adjustment in
order to measure the RAS and CAS signals, which do not
necessarily coincide with the POD ADDR or POD DATA sync
pulses. The Demo/Trainer UUT stimulug programs for the

THE UUT DESCRIPTION 7.5.

The UUT description, which provides the 9100A/9105A with
information used for GFI and UFI, consists of:

¢ Reference designator list (reflist).

* Part Library (part descriptions). A basic part library is
provided with the system,

. Node list (net list or wire list),

The Programmer's Manual provides detailed information about
this database and how GFI and UFI use it. The following

sections are simply a brief overview,

Reference Designator List (REFLIST) 7.51.

The reference designator list establishes the relationship between
reference designators (such as "U80") and a part or component

type (such as 7410). It also specifies the testing device (probe
or I/O module) to be used on the component.

A sample Demo/Trainer UUT reference designator list is shown
in Appendix A. GFI and UFI both require the reference
designator list to determine the device needed to test a
component.

No distinction is made between families of components, such as
74LS00 or 74HCTC00. The Fluke-supplied part library uses
generic names like 7400 and 7432, so when you make entries in
a reference designator list you will need to use generic names.

Part Library (Part Descriptions) 7.5.2.

The part library is a group of files (part descriptions) that
describe UUT components. A part description specifies each
pin to be an input, output, bidirectional, ground, power, or
unused. Each output has a list of related inputs which affect that
output, The library can be accessed through any UUT directory.
A basic part library is supplied by Fluke. You can add part des-
criptions, including custom designs.

See the Guided Fault Isolation section of the Programmer’s
Manual for examples of part descriptions.

Node List (Net List or Wire List) 7.5.3.

The node list specifies interconnections between reference
designators. The list is only necessary for GFI, which uses it to
backtrace between components. ‘

A complete node list contains one line for each node in a UUT.
The pins on one line are all connected to form a node. Lines
may be continued on the next line with the backslash (V)

"character.

Appendix B contains a node list for the Demo/Trainer UUT.
Reviewing this example will be helpful to you when developing
you own node lists,

g
-

Bus-Master Pins in a Node List 7.5.4.

The 9100A normally determines the flow of data from the node
list; it assumes that data can be sent from any pin to any other
pin on a given node. However, sometimes two pins are
connected together by a node but do not actually communicate
with each other; this situation commonly arises in bus-oriented
systems with many components connected to a common
microprocessor data bus.

In such cases, you need to let GFI know that only some pins
(called bus-master pins) can communicate with all the other pins
on the same node. This is done by entries in the optional
*masters section of the node list.

The *masters section is optional, and for most UUT node lists it
can be omitted. Where it is needed, it usually contains just a
short list of pins, because most nodes have only a single source.
It is only for nets such as the one in the following example that
the *masters section becomes important,

Consider the node shown below: It consists of bit 0 of a
bidirectional data bus connecting several components to a
MiCroOprocessor.

Micro- 15 Data Bus Bit 0
processer fg——ye y y 1
] v? ¢ 10 11
" RAM 1 RAM 2 ROM vo
25
uia uUz2 Ua U3i

7-13

Only pin U25-15 can talk to all other input pins on the node and
only U25-15 can receive from all other output pins on the node.
Either condition would be sufficient to make U25-15 a bus-
master pin.

For this reason, pin U25-15 is shown as a bus-master pin in the
partial node list below. It is listed in the regular section of the
node list and is also included in the optional *masters section of
the node list.

UB-12 U3-9 U42-21 .
U25-15 U19-8 U22-2 U9-10 U31-11
Ul7-4 028~5 U27-6

*masters
U25-15

See the Node List section in the Programmer's Manual for more
information about bus-master pins.

Choice of Backtracing Path 7.5.5.

7-14

If there are two or more stimulus programs available for a node,
GFI will attempt to use the program that stimulates all of the
node's outputs (and related inputs) before using programs that
stimulate only some of the node's pins.

Here are three cases that relate to the AND gate in Figure 7-3.
Each case shows the test results from two stimulus programs, A
and B, and the conclusion that GFI comes to:

T
,

Micro-
processor

. 3 Butfer

8
P

/

us-Master

L]

DMA

Circuit

®
-8

ROM

Bus-Master
in

Figure 7-3: Direction-Control Example

7-15

Case l: Inpwel Input2 Cutput 3

Stimulus Program A good good bad
Stimulus Program B - bad bad

GFI will accuse the node of being bad because stimulus
program A covers all the nodes and is therefore evaluated
first. In this case stimulus program B will not be

executed.

Case2: Inpwel Input2 Output 3
Stimulus Program A bad good bad
Stimulus Program B - bad bad

GFI will test the component connected to input 1, again
because stimulus program A covers all the nodes and is
therefore evaluated first Therefore, GFI will backtrace to
the Bus Buffer.

Case 3. Input 1 Input 2 Output 3

Stimulus Program A good good good
Stimulus Program B - bad bad

GFI will test the component connected to input 2, because
stimulus program A finds no problem and the system goes
on to evaluate stimulus program B. Therefore, GFI will
backtrace to the DMA circuit.

Consider these two problems in Figure 7-3, in which both the
microprocessor and the DMA controller are both *master
components:

¢ If the problem is in the microprocessor, evaluation is the
same as for Case 2, above, and GFI troubleshooting traces
back to the microprocessor from input 1 of the AND gate.

® If the problem is in the DMA controller, evaluation is the

same as for Case 3, above, and GFI troubleshooting traces
back to the DMA circuit from input 2 of the AND gate.

s

e

While you can effectively steer GFI by designing stimulus
programs to cover all or only some inputs and outputs, you do
not usually need to worry about control of the backtracing path;
it is only needed in special circumstances,

Normally, you should design stimulus programs that test all
inputs and outputs of a node or component. If there is no single
stimulus program that covers all inputs and outputs, the
9100A/9105A uses these criteria to determine status:

® If ANY stimulus program gives a BAD response on a pin,
the pin is considered BAD.

* If ALL stimulus programs give GOOD responses on the
pin, the pin is considered GOOD.

¢ Otherwise, the pin is considered UNKN OWN.

SUMMARY OF GFI COVERAGE 7.6.

The 9100A provides a convenient means to check the
completeness of the information you have entered into the GFI
database for a particular UUT. When viewing the UUT
directory display, you can press the SUMMARY softkey to
request generation of a summary of GFI coverage for that
particular UUT. The compiled database (GFIDATA or
UFIDATA) will be examined and a summary will be generated,
displayed on the monitor, and stored in 2 UUT text file that you
specify. If you press the Shift key on the programmer's
keyboard and the SUMMARY softkey, the summary will appear
on the monitor without sending a copy to a text file,

Creating a Summary of GFI Coverage

The following procedure is used to generate a Summary of
GFI Coverage for a UUT:

1. Press the EDIT key on the operator's keypad to enter
the Editor (unless you are already in the Editor).

7-17

7-18

2. Use the EDIT key on the Programmer's Keyboard to
enter the name of the UUT so that the UUT directory
for this UUT is displayed on the monitor, The UUT
directory you have selected must contain a compiled
database (either GFIDATA or UFIDATA).

3. Press the SUMMARY Softkey (F8) and the 9100A
will issue the prompt shown below to ask for a text
file name:

Generate GFI Summary to TEXT file

The Summary of GFI Coverage to be generated will
be stored in this text file.

4. Type in the text file name you wish and press the
Return key. The 9100A will then begin generating
the Summary of GFI Coverage for the UUT and will
display the results on the monitor.

When the generation is complete, the following message will
appear on the monitor:

Press Msgs key to continue

When you press the Msgs key on the programmer's keyboard,
the UUT directory display will reappear on the monitor. You
can use the Edit key on the programmer's keyboard to access the
text file you generated.

U

Statistical Summary

The first part of the Summary of GFI Coverage is a statistical
summary of the UUT, based on the GFI database you have
provided. Figure 7-4 shows a typical example of such a
summary. Each entry in the summary is described below:

Summary for /<disk drive>/<UUT>: In Figure 7-
4, HDR is the disk drive and the UUT directory name is
EXAMPLE.

Parts: The number of u‘nique part types in the UUT,
based on the reference designator list.

Reference Designators: The number of reference
designators in the UUT, based on the node list.

Connected Pins: The number of UUT pins that are
connected to other pins on the UUT, based on the node
list.

Unconnected Pins: The number of UUT pins that are
not connected to any other UUT pins, based on the node
list.

Total Pins: The total number of pins on the UUT.

Programs: The number of TL/1 programs that can be
used by GFI as stimulus programs. This number is equal
to the number of response files.

Testable Connected Pins: The number of connected
pins that can be tested by GFL. Testable pins have either
been characterized with LEARN, or are a member of a
nede that has been characterized with LEARN.

Testable Unconnected Pins: The number of
unconnected pins that can be tested by GFI. Testable
unconnected pins have been characterized by LEARN and
appear in a response file.

Total Testable Pins: The total number of UUT pins
that can be tested with GFI, given the database you have
entered.

7-19

7-20

Summary for /HDR/EXAMPLE:

53
167
1694
225
1919
42

1688
16
1704

6
209
215

99%
88%

Parts

Reference Designators
Connected Pins
Unconnected Pins
Total Pins

Programs

Testable Connected Pins

Testable Unconnected Pins
Total Testable Pins

Untestable Connected Pins
Untestable Unconnected Pins
Total Untestable Pins

Test Coverage of Connected Pins
Test Coverage of Total Pins

Figure 7-4: Statistical Summary Display for a UUT

®* Untestable Connected Pins: The number of
connected pins that cannot be tested with GFI, due to an
incomplete database.

® Untestable Unconnected Pins: The number of
unconnected pins that cannot be tested with GFI, due to an
incomplete database.

® Total Untestable Pins: The total number of UUT pins
that cannot be tested with GFI, given the database you
have entered.

¢ Test Coverage of Connected Pins: The percentage
of connected pins on the UUT that can be tested with GFI,
given the database you have entered. A figure of less than
100% indicates an incomplete database.

* Test Coverage of Total Pins: The percentage of
UUT pins that can be tested with GFI, given the database
you have entered. This figure is typically less than 100%
because a UUT often has unused pins.

Pin Coverage

The second part of the GFI Summary of Coverage display is a
matrix showing how component pins are tested with the
database you have provided. Figure 7-5 shows a partial
example of a pin coverage matrix. The matrix is organized with
the reference designators listed vertically (in the left-most
column) and with component pin numbers listed horizontally.
The number of pins per line will be the number required by the
largest component in the list. If more than 35 pins are required,
the display will produce a second list of reference designators
following the first list and this second set will have pin numbers
starting with 36 and continuing up from there.

Each component pin has a one-character symbol that shows how
GFI looks at the pin given the database you have provided. The
table at the bottom of Figure 7-5 shows the meaning of each
symbol that is possible: ‘

7-21

7-22

Pin Coverage:

Jury

*QUwOo—

[
aHOQO P_HHHHHOOOHHHHH

11111111311 222222222 333333
2345678901 23456789012345678 012345
0.- W = mie e o e e owe owow W = m . omow e e oo o= +
e e e v o m e . P e v m
Lo T v e e e e e e e et e e e e e e
* x T T **+x 1T * T JTIIIIIIIIIIIIIII I1ITIIII
I I XTI . v v o v % % ¢ 2 = '» s 2 28 = 2 2 =2+ ¢« . [P
ITI. P e e s s T e e e s . ¢ 4 4 b 4 4 % s a momomowow
I I @ @ @ i e o s« 5 » o s o 8 5 %5 2 %5 %8 = °» % *+ o#w o ow 0w ow o= o4 aw
I v vttt s % v n v a e & %onom o W e e r e wowom s s o omoaow
L
0
T i et e s e e e a a e s s s s aa s aaa e ean e e
e
ITIIBIIBIIBIILIBBIIBI .2 v o« s s s s s = = a2 2«
I*IIII*III*QOQOO*0BBBBI *0OBBEBB * % x g *T
OIOIQOIOITOIOIT v oo s a0 o ‘e m om o= om a e a o
OTITOQOIOGOIOQCIOTIP . o v v v o o v o 2 = = = s 2 s 2 3 2 =«
*A QoA AT X 30000000000000000 ITI1I00C0CI

Meaning

The pin is testable as an input only.

The pin is testable as an output only.

The pin is testable as both an input and an output.

The pin is testable as a power pin.

- The pin is testable as a ground pin.

The pin is not testable (because it has no associated
stimulus program or no known-good
respense stored for this pin).

There is no such pin in the database.

Figure 7-5: Pin Coverage Display for a UUT

e

FAULT CONDITION EXERCISERS 7.7.

When the 9100A/9105A detects a fault, and a fault condition
handler is not defined for the fault condition raised, a fault
message will appear on the operator’s display, At this point, the
operator can press the LOOP key on the operator's keypad to
repeatedly reproduce the fault so that it can be isolated manually.
To do so requires that a fault condition exerciser exist for the
fault condition that was raised. If the exerciser exists, it is
invoked continually until the operator presses the STOP key on
the operator's keypad.

A fault condition exerciser is a software block designed
specifically to reproduce a fault condition in a UUT. Two types
of exercisers are available: built-in exercisers and user-defined
€XEICiSers.

When a fault condition is raised by a built-in stimulus function
(such as read, write, ramp, toggle, or rotate} or a built-in test
function (such as restbus, testramfast, testramfull, or
testromfull), the 9100A/9105A has a pre-defined sequence of
commands that exercise the fault when the LOOP key is pressed.
These are called built-in fault condition exercisers. In addition,
you as a programmer can write your own fault condition
exercisers for fault conditions that you define or to replace the
built-in fault condition exercisers. When one of these fault
conditions is encountered and the LOOP key is pressed, the fault
condition exerciser with the matching name is invoked.

If a fault condition exerciser for the displayed fault condition is
found when the LOOP key is pressed, the fault condition
exerciser is invoked repeatedly to stimulate the UUT. This
allows the probe to be used to examine node responses in the
circuit and to trace faulty circuit operation to its cause.

7-23

REPAIR AFTER TROUBLESHOOTING S 7.8.

7-24

When GFI terminates, it will often display one of the following
messages:

¢ Open circuit.
¢ Bad IC or output loaded.

When GFI reports an open circuit, it has found an input which is
bad even though the signal source on that node is good. To
repair the node:

1. Retest both ends of the node to make sure the output
was properly probed.

2. Confirm the open circuit with an chmmeter.

3. Trace along the node with the chmmeter until the
open point is found.,

4, If the node is connected properly, check for:

- An error in the node list entry for the failed node.

- Marginal measurements due to the frequency or
timing of signals on the node. Ringing may be
occurring on the node, or the time between the
sync and the signal transitions may be marginal.
Change the stimulus setup or the sync timing to
correct the problem (see Section 8.5 on adjusting
sync timing).

When GFI reports a bad IC or output loaded, it has found all
good inputs and one or more bad outputs. In this case,
determine whether the part is bad or the output is loaded. To do
this, test the component by overdriving its inputs with the I/O
module while measuring level history or CRC signatures.

i
.

In doing so, determine whether:

The level history showed that the line went to a high and
low state. If so, the node is only loaded part of the time,
or the component is bad.

The node is loaded. If the component is good but the node
is bad, the node must be loaded. The cause of a loaded
node can be:

A short to another node, the power supply, or
ground,

A damaged IC loading the node. Example 1 in
Figure 7-6 shows a bad input at U6 causing node
A to be loaded.

Another output source is also driving that node.
Check the enable and control lines of any other
devices that can drive the node. Example 2 in
Figure 7-6 shows node A to be loaded because
both U1 and US5 are attempting to drive the node
at the same time. Ul is operating as it should but
the U5 enable-line state is incorrect and U5 is
also driving the same node.

Operators should be provided with a procedure for tracing short
circuits. For example, a milliohmmeter can be used to determine
the point at which a node is shorted. To do this, attach one lead
of the millichmmeter to the faulty node. With the other lead,
look for low resistance paths.

7-25

|

/

= Inside Us

o

5

: o
=
|

_Ug Enabled

Bad

Input —%

Uz
‘ﬁ Disabled

Example 1: BadIC

[

‘

3

6

CY?—CI

dli

5

Ui Egabled 4

Input —¢ Bad L

uz 3

ﬁ Disabled

Example 2: Bus Contention

c

:

Enabled

Shorted to Ground

Disabled
Enabled

Cutput

Disabled

Enabled

Enabled <— Incoming Level on Enable
Line Causes Bad Node
Enabled

Cutput

Disabled

Figure 7-6: Node Loading

7-26

Sl

P

P

Section 8
Glossary

If you cannot find a term in the glossary, search the index for a
reference to that term,

Active Edge
A signal transition used to initiate action.

Address Space

A section of memory reserved for a particular use, such as the
stack. The term "decoded address space” implies memory
residing in physically separate chips (selectively enabled by a
"decoder”), such as a frame buffer, character generator, or the
control registers inside a peripheral chip.

Aliasing
A condition where a component address responds to more than
one combination of address bus bits.

Assert
To cause a signal to change to its logical "true” state.

Asynchronous

Not synchronized to the microprocessor or not synchronous to
any clock signal.

8-1

8-2

Automated Test
An automated activity that verifies the correct operation of a
circuit by comparing its output to the expected output.

Automated Troubleshooting
An automated process of locating a fault on a UUT.

Backtracing

A procedure for locating the source of a fault on a UUT by
checking logic along a logical path from bad outputs to bad
inputs until the point where no bad inputs are found.

Bus
A group of functionally similar signals.

Bus Contention
A situation where two or more bus devices are trying to put
different data onto the same bus.

CAD
An acronym for Computer-Aided Design. CAD systems let the
user create, manipulate, and store designs on a computer.

Comment
Text in a program that is not executed. A comment in a TL/1
program or a node list must begin with an exclamation point (!).

Component
A passive or active part on a UUT.

Control Line
A signal that comes out of a microprocessor and is used to
control the UUT.

CRC Signature

CRC is an acronym for Cyclic Redundancy Check. A CRC
signature is a compression of a long data stream into a 16-bit
number.

Cursor
A symbol on a display (usually a box or an underscore) that
indicates where a typed character will appear.

Data Bus
A set of signal paths on which parallel data is transferred
between two or more devices.

Device

1. Refers to the probe, an I/O module, a reference designator,
or the pod. 2. Also used with I/O operations to specify a port
or a disk drive.

DIP
An acronym for Dual In-line Package. A DIP has an equal
number of pins on each of its long sides. See also SIP.

Directory
A collection of related sets of data (files, for example) on a disk.

Drivability
Testing whether lines can be driven to the appropriate active high
or active low level.

Dynamic Coupling
Data in one memory location is affected by combinations of data
in other memory locations.

Edge
The transition from one voltage level to a different voltage level.,

Exerciser
See Fault Condition Exerciser.

External Synchronization
Synchronizing a node response measurement using signals
external to the pod.

Fault
A defect in a UUT that causes circuitry to operate in a manner
that is inconsistent with its design.

Fault Condition

A recognition by the 9100A/9105A that a fault exists on the
UUT.

8-3

8-4

Fault Condition Exerciser

A group of statements that attempts to repetitively reproduce the
conditions that generate a fault condition. (Sometimes called just
an "exerciser.”)

Fault Condition Handler
A group of statements that is executed when a particular fault
condition occurs. (Sometimes called just a "handler.")

Fault Condition Raising
The generation of a fault condition either from detecting a fault
on a UUT or from using a TL/1 fault statement.

Feedback Loop
A circuit in which one or more outputs is routed to the circuit's
input.

Forcing Line _
Input to the microprocessor that forces it to a particular known
state.

Functional Test
An activity that verifies the correct operation of a circuit by
comparing its output to the expected output.

GFI
See Guided Fault Isolation.

GFI Summary :
A record of the components that have been tested by GFL.

Go/No-Go Test
A pass/fail test; either a unit passes or it doesn't.

Guided Fault Isolation
An algorithm that uses backtracing to troubleshoot a UUT.

Handler
See Fault Condition Handler.

T

Paan

Pt

rr—

Hexadecimal
Pertaining to the base 16 numbering system. (Often abbreviated
as "hex.")

I/0

An abbreviation for Input/Qutput. The transfer of data to and
from devices other than the local memory of the microprocessor
system.

I/0 Module
An option for the 9100A/9105A that allows simultaneous
stimulus or response for multiple points on a UUT.

Level History

A character string that represents a record of the logic levels
measured at a point over a period of time. "1", "X", and "0"
represent high, invalid, and low states, respectively.

Library

A directory that contains a collection of only a particular type of
file. The 9100A/9105A uses four libraries: a part library, a
program library, a pod library, and a help library.

Mask
A value where each logic "1" represents a bit that is to be acted
on,

Monitor
A 24-line, 80-column video display that connects to the rear
panel of the 9100A/9105A. .

Node
A set of points that are all electrically interconnected.

Node List
A file containing a description of the interconnection of all pins
on a UUT.

Operator

1. A symbol that acts on one or more values or expressions to
produce another value. 2. A person who uses the 9100A/
9105A for testing or troubleshooting,

8-5

8-6

Operator's Display
Three-line display on the mainframe of the 9100A/9105A.

Operator's Interface

‘The operator’s display and the operator's keypad.

Operator's Keypad
The set of keys on the front panel of the basc unit of the
9100A/9105A.

Overdrive

To put a logic state on a signal line by applying more power than
the normal driver for that node. This is how-the 9100A/9105A
injects signals into the UUT.

Part Descriptibn
A file that describes a component on a UUT.

Part Library
A library of part descriptions.

Pod Library
A library of pod descriptions, each of which contains a pod
database and pod-related TL/1 programs.

Pod Synchronization
Synchronizing a node response measurement using signals
generated by the po-d to indicate the sampling time.

Pnonty Pin
A pin that the GFI program will test first if a particular node is
bad.

Probe
A hand-held device that can stimulate and measure any single
point on the UUT.

Program Library
A library of programs that can be called by any program in the
userdisk.

Programmer's Interface
The monitor and the programmer's keyboard.

Programmer's Keyboard
The keyboard that connects to the side panel of the 9100A.

Raise
See Fault Condition Raising.

Reference Designator
A one to ten character string naming a component on the UUT.

Related Input Pin
An input pin on a component that affects an output pin on that
same component.

Response File

A file containing data generated by executing a specific stimulus
program to a UUT and recording the responses from its
execution.

RUN UUT Test
A feature that allows the normal operation of a UUT using its
Oown program.

Signature
See CRC Signature.

SIp
An acronym for Single In-line Package. See also DIP.

Softkey
A key that has its function determined by software.

Stat\e Machine

A circuit which produces output signals in response to input
signals and its own internal state. Typically used to generate a
sequence of control signals, as in a bus interface.

8-7

8-8

Stimulus Program

A program that exercises a circuit while the activity on circuit
nodes are recorded to see if the circuit produces the same
response as a known-good circuit.

String
A group of characters enclosed in double-quote characters (")
and manipulated as a single entity.

Synchronous
Coordinated to the transitions of a clock signal.

Termination Status
An indication of whether a UUT passed a test.

Timeout
A condition in which an expected event has not occurred within
the expected time period.

Toggle
Change to the complementary logic state.

Transition Count
A record of the number of times the logic level at a node changes
from low to high within a period of time.

Troubleshooting
A process of locating the area of a UUT that is causing a fault.

Userdisk

1. A diskette containing test programs and information about a
particular UUT. 2. The current disk drive that is used as a
source for UUT programs and data.

UUT
Unit Under Test. A physical item, i.e., a board or a system to
be tested.

UUT Directory
A set of files that contain information about a particular UUT.

P

——

Wait State
A bus cycle which is too short for a slow chip is lengthened by
the insertion of one or more clock cycles, called wait states.

Watchdog Timer

A circuit which produces a signal, typically a reset or high-
priority interrupt, if a timeout condition is met. For example, an
excessive number of wait states may trigger a watchdog timer.

Wildcard
A symbol that represents any sequence of characters. The
9100A/9105A uses the asterisk character (*) for this purpose.

Window

An area of the monitor reserved for certain information to be
displayed.

8-9

8-10

(This page is intentionally blank.)

Appendix A
Demo/Trainer UUT
Reflist

NAME: REFLIST

DESCRIPTION: SIZE: 3,555 BYTES
TESTING

REF PART DEVICE

R72 RESISTOR PRCOBE

R73 RESISTOR PROBE

R4 RESISTOR PROBE

R79 RESISTOR PROBE

R78 RESISTCR PROEE

R&1 RESISTOR PROBE

R62 RESISTOR PROBE

R63 RESISTOR PROBE

R64 RESISTOR PROBE

R65 RESISTOR PROBE

R70 RESISTOR PROBE

c4 CAPACITOR PRCBE

C5 CAPACITOR PROBE

of: CAPACITOR PROBE

c9 CAPACITOR PROBE

C13 CAPACITOR PROBE

€15 CAPACITOR PROBE

Cleé CAPACITOR PROBE

Ccl7 CAPACITOR PROBE

u74 2016 I/0 MODULE
U85 2016 I/0 MODULE
u?2 2674 I/0 MODULE
U78 2615 PROBE

Ul1 2681 PROBE

077 27128 I/0 MODULE
U3o 27256 I/0 MODULE

A-1

A-2

u29
uze
27
01

02

cl

R35
R1

R77
R8O
R15
R14
R16
R13
R17
R12
R18
R11
R27
R25
R24
R28
R29
R23
R30
R19
R68
R69
R20
R21
R22
R34
R33
R3

RS

R6

R7

R8

R32
R31
R26
R9

R2

u34
U3s
U36
u37
U3s
U39
u40

271256
27256
27256
TRANSISTOR
TRANSISTOR
CAPACITOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTCR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESTISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTCR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTCR
RESISTOR
RESTSTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
RESISTOR
4161
4164
4164
4164
4164
4164
4164

I/0
1/0
/0

MODULE
MODULE
MODULE

PROBE
PROBE
PROEE
PROBE
PRCBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

‘PROBE

PROBE
PROBE
PROBE
PROBFE,
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

I/0
I/0
/0
1/0
I/¢
I/0
I/0

MCDULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

/("'"‘\

Pl

v

U41
048
U449
Us0
Us1
U52
Us3
U054
Us5
Re7
Cé

c1

R71
R10
R66
ul4
J5

U1

U1s
U3l
u58
U24
us

Ued
U517
[VAR]
04

Ue3
u56
uz1
Us

ug

U3

023
44
CR1
J2

J3

Jé

U73
usa
(of:3/]
ues
use
033
ua7
Usl
U0
Vi
Ue2

4164

4164

1164

4164

4164

4164

4164

4164

4164
RESISTOR
CAPACITOR
CAPACITOR
RESISTOR
RESISTOR
RESISTOR
80286
CONNGB
82284
82288
8255

7400

7400

7400

7402

7404

7404

7408

7408

7410
74138
74138
74138
74245
74245
7474
DIODE
CONN_RS232
CONN_VIDEO
CONN_KEYRD
74157
74157
741517
74257
74257
TSEGLED
7SEGLED
7400

7400

7400

7904

1/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
1/0 MODULE
1/0 MODULE
I/0 MODULE
PROBE

PROBE

PROBE

PROBE

PROBE

PROBE

PROBE

PROBE

I1/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I1/0 MODULE
1/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULE
I/0 MODULE
1/0 MODULE
1/0 MODULE
T/0 MODULE
T/0 MODULE
I1/0 MODULE
PROBE

PROBE

PROBE

PROBE

1/0 MODULE
I1/0 MODULE
I/0 MODULE
I/0 MODULE
1/0 MODULRE
PROBE

PROBE

1/0 MCDULE
1/0 MODULE
I1/0 MODULE
I/0 MODULE

A-4

059
uso
usl
u?

U2s
uz2e
u20
013
U43
u17?
u7s
Ue8
Ue9
U3z
46
e

ui79
Ueo
U45
Use
u87
u1l0
u2

Ule
u22
u7e
u42
ue7
U12
J4

U118
usz
uss
Yl

54

53

52

sl

56

D51
zZ1

74109
7410

7410
74112
74112
74125
74148
1414
14164
14164
74175
74244
74244
74244
74244
7430

7430

7431

7432
74313
74373
74373
74374
74314
74374
14374
74390
74590
MAX232
PWRCONN
OSCILLATOR
74175
1486

XTAL
KEYSWITCH
KEYSWITCH
KEYSWITCH
KEYSWITCH
KEYSWITCH
LED
NETWORKLO

I/0

MODULE

PROBE
PROBE

1/0

MODULE

PROBE

/¢
/¢
I/0
/¢
/¢
I/0
1/0
I/0
I/0
I/0
I/0

"I1/0

I1/0
I1/0
I1/0

‘I/0

1/0
I/0
I/0
I/0
I/0
I/0
I/0

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MCODULE
MODULE
MODULE
MCDULE
MODULE
MODULE
MCDULE
MCDULE
MCDULE
MCDULE
MODULE
MODULE
MODULE
MCDULE
MCDULE
MODULE
MODULE

PROBE
PROBE
PROBE
PROBE
EROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE
PROBE

I/0

MODULE

T

e

Appendix B

Demo/Trainer UUT

Node List

NAME: NODELIST

DESCRIPTION:
U23-1r U41-2
023-12 U40-2
U23-13 U39-2
U23-14 U38-2
U23-13 U037-2
U23-16 U36-2
U23-17 U035-2
U23-18 U34-2
058-8 0U34-15
Re%-1 R72-1
Ugq~-6 U72-32
R14-1 DU4e-12
R13-1 U46-14
R12-1 U4de-16
R11-1 Ude-18
R18-1 U46-3
R17-1 U46-5
Rle6-1 U4s-7
R15-1 U46-9
U32-11 U31-40
R27-1 032-9
R25-1 U32-12
R24-1 U32-14
R23-1 U32-16
R18-1 U032-18
R3C-1 TU32-3
U32-13 U31-39
R28-1 0U32-7
U32-15 U031-38

U69-17
Ua0-14
039-14
U38-14
U37-14
U36~14
U35-14
U34-14

U30-11
U69-15
U69-13
U69-11
U69-8
U69-6
U69-4
U6g9-2

U35-15 U36-15

uas-g

uz2e-11
u30-12
U30-13
U30-15
U30-1¢
U30-17
U30-18
U30-19
U37-15

U41-14
U28-12
U28-13
Uz2g-15
Uz28-16
uz2g-17
u28-18
U28-19
U38-15

5IZE: 16,492 BYTES
21-10
£1-9
Z1-8
21=17
Z1-6
Z1-5
Z1-4
£1-3
U39-15

U40-15 041-15

R29-1
U32-8
R27-2
R19-2
uz2-5 U
Ug4-3
U84-10
16-15
Uz28-9
Ull-36
Ull-37
716-19
U70-11
u22-9
Us5-1
U3-18
029-1
uz2-e6 U
RZ25-2
R24~2
R23-2
R29-2
U3z-e
u3z-2
U3z-4
U46-11
R12-2
R17-2
R13-2
R14-2
R15-2
R11-2
Usg-2
U6l1-1
Uei-4
U43-11
Usl-6
Uel-3
070-3
U70-6
U70-8
U56-190
U75-5
U68-3
U68-5
Ue68-14
U16-6
U16-5
ugs-9
Ugr-13

032-5

v31-1

033-7

U¥33-1 _

66-6 U21-2 U30-26 U29-26 U28-26 U27-26

u72-31

U72-33

U65-5 UB4-11 Ull-4 U72-38 U31-8 U30-9 U29-9
u27-9

v1-1 cs-1

Y1-2 ca-1

U61-9 U21-4 U62-9 U62-11

Usl-5

U61-10 U57-13 U62-13
U66-1 U607
v48-2 U48-14 U68-2 UL0-19 Ull-21 U72-15 U31-27 \
9 U27-19 '
66-3 U21-1 U30-2 U29-2 U28-2 U27-2

U33-8
U33-10
U33-13
U33-11
031-2
U31-4
U31-3

U31-22

U47-13

U47-11

U47-10

v47-8

v47-7

v47-1

U8-14

U62-12

U62-10

U61-12 U67-11 U67-13 U44-1 U44-13 U59-13
U68-1 U68-19 UT4-21

U69-1 U69-19 UB5-21

u71-2

U71-4

u71-5

U21-15 U72-2

U83-1C U72-29

u74-9 U77-6 \
U74-10 U77-5

U74-15 U77-24

u78-4

U78-36

U78-29 {
U77-16 i

P

Us7-8 U7T7-15

U87-17 UT7-18

U87-7 UTTI~13

U87-18 U77-19

U75-2 U77-10

U75~7 U771-9

U75-10 U77-8

U86-19 U7B-19

Us7-14 UI7-17

U87-3 U?T7-11

Us7-4 U77-12

U86-15 U78-17

‘UBé-16 UTB-16

U86-12 U7T8-25

U86-6 U78-18

U69-9 UB6-13 U85-13

U69-18 U8B5-17 UT7-26

U72-23 U78-11

U69-12 US6-8 UB5-14

Ugo-8 UBl-13

U80-10 UB1-10 UB2-6

U80-12 U81-1

U80-2 U70-5 U71-12 UBl1-4 U82-15

Us0o-4 U70-9 U§1-11 U82-10

U80~6 UB1-2

U80-11 U79-11 UB82-14

UB0-5 U79-4 U62-2

Uso-3 U70-13 U79-5 U8B1-9 UB2-3 U73-1 U83-1 UB4-1 UE2-5

U70-12 U76-11 U79-3 U86-11 U87-11 U72-16 U78-33

U71-13 079-6 UB1-3 yUg2-11

U22-5 U21-6

U83-9 U74-3 Uy8s5-3

U3-11 US5-2 US55-14 U68-17 U10-2 U11-28 U7T2-8 U31-34 \
v29-11 U27-11

U32-17 U31-37

U2-15 U65-6 U73-11 U30-24 (29-24 U28-24 U27-24

Ui6-5 U66-5 UB3-11 U30-5 U29-5 U28-5 U27-5

U46-13 U31-23

U46-8 U31-21

U2-9 U65-13 U30-23 U29-23 U28-23 U27-23

U27-22 U6-5 U45-3 028-22

U34-4 U35-4 U36-4 U3IT-4 U38-4 U39-4 U40-4 U41-4 U48-4 \
U49-4 UV50-4 U51-4 US2-4 U53-4 US54-4 U55-4 U64~8 UG3I-8

U34-5 U35-5 U36-5 U65-4 U67-15 U37~5 U3IB-5 U39-5 U40-5 \
U41-5 U48-5 U49-5 US0-5 US51-5 U52-5 U53-5 U54~5 US55-5

U34-6 U35-6 U36-6 U5-9 UG7-2 U3T-6 U3B-6 U3I-6 U40-6 \
U41-6 U48-6 U49-6 U50~6 US51-6 U52-6 US53-6 US54~6 U55-§

U34-7 U35-7 U36-7 US5-7 U67-1 U37-7 U3IB-T U397 U40-7 \
U41-7 U48=7 U49-7 US0-7 US51-7 US2-7 US3-7 US4-7 U55-7

U34-3 U35-3 U36-3 U37-3 U38-3 U39-3 U40-3 U41-3 U48-3 \

U49e-3 U50~-3 U51-3 U0U52-3 U53-3 U54-3 U26-8 U55-3

U34-12 U35-12 U36-12 U65-12 UE7-3 U37-12 U38-12 U39-12 \
U40-12 041-12 U48-12 U49-12 U50~12 U51-12 US2-12 U53-12 \
U54-12 U55-12

U34-11 U035-11 U36-11 Ue6~4 U67-4 U37-11 0U38-11 U39-11
U40-11 U41-11 U48-11 U49-11 U50-11 U51-11 052-11 U053-11 \
U54-11 U55-11

U34-10 U035-10 U36~-10 U66-7 Ue7~5 U37-10 U38-10 U39-10 \
U40-10 U41-10 U48-10 U49-10 U50-10 US1-10 U52-10 U53-10 \
U54-10 U55-10

U34-13 U35-13 U36-13 U66~-9 U67-6 \
037-13 038-13 U39-13 U40-13 U41-13 0U48-13 U49-13 0U50-13 \
051-13 U052-13 U53-13 U54-13 0U55-13

Us58-11 U48-15 U49%-15 U50-15 US1-15 U52-15 053-15 U54-15 \
Us5-15

Us-2 U8-11

Us-3 U8-10

U5-10 Ul1l-9 U72-3 U31-36 Ui5-11

Us57-2 U5-13

Uugi-12 (U74-4 085-4

Us-11 U81-8

Ule-2 UG6-11 UB3-5 U30-4 0U29-4 U28-4 UV27-4

U43-9 TU56-12

Uz-12 U65-10 U73-5 U30-21 U29-21 U28-21 027-21

Us6~-1 U44-9 U64-12

U34-9 U35-9 U36-9 U66-12 U67-7 U3I7-9 U3B-9 U39-9 U40-9 \
U41-9 U48-9 U49-9 U50-9 0U51-9 U52-9 U53-9 054-9 U55-9

Us56-9 021-14 U11-39

U46-15 U31-24

U46-17 031-25

U76-15 U78-38

U75-15 U77-=7

Us9-1i4 U8B6-7 U85-15

U45-1 U45-4 U56-3 079-2 U57-1 Ul1l5-8

U45-5 09-9 U30-20 U29-20

U2-16 U65-3 U73-14 030-25 U29-25 U028-25 U027-25

02-19 Ue6-14 vg3-2 U30-3 U29-3 U28-3 U27-3

va6-6 U31-20

U46-4 U31-19

vde-2 U31-18

Ul6-6 U66-2 UB3-14 U30-6 U286-6 U28-6 U27-6

U3-14 U52-2 U52-14 Us8-11 0U10-% Uil-19 U72-11 U31-31 \
U29-15 U027-15

U3-13 U53-2 U53-14 U68-13 Ul0-6 0U11-27 U72-10 U31-32 \
U29-13 U027-13

uss-4 078-28

ggz2-1 013-10

U3-15 U51-2 US1-14 Us8-8 U10-12 Ull-26 U72-12 031-30 5\
U29-16 U27-16

U22-4 Jbh-66 Uld-66

B-4

—

o

U22-14 J5-13 Ui4-13
uz22-18 J5-15 Ul4-15
U2-4 J5-17 Ul4-17
U22-13 J5-12 Ul4-12
U22-17 J5-14 Ul4-14
U14-52 C4-1
J5-52 Cl3-1
D16-8 J5-27 Ul4-21
Ule6-7 J5-26 Ul4-26
Ul16-13 J5-28 1Ul4-28
01-10 Ul7-8 U44-3

07-1 U13-1 Ul4-31
Ul6-14 J5-32 U14-32
Ul6-18. J5-34 ©U14-34
R1-2 0Ul-4 U19-1 J5
Uz23-2 J5-51 Ul4-51
U23-3 J5-49 Ul4-49
U3-2 J5-50 Ul1l4-59
U3-6 J5-42 Ul4-42
U23-4 J5-47 U14-47
U23-5 J5-45 U14-45
U23-6 J5-43 U0U14-43
023-8 J53-39 0U14-39
U2-11 Uls-11 U22-11
US56-5 U11-10 U72-1
Ule-le U65~2 U84-14

U28-10 027-1¢
U23-9 J5-37 Ur4-37
026-1 U13-4 U13-13
03-5 J5-44 Ul4-44
uz22-8 Js5-1 U1l4-1
U23-7 J5-41 D14-41
U3-2 J5-36 Ul4-36
Js-64 Ul3-12
03-8 J5-38 U14-38
U3-7 J5-40 U14-40
U2-8 J5-19 U14-19
U2-2 Uee-10 U21-3
U3-3 J5-48 Ul4-48
02-18 J5-23 Ul14-23
U3-14 J5-46 Ul4-46
Ug4-12 U74-8 U85-8
U84-3 U74-7 U85-7
vl-16 J5-4 Ul4-4 U
R26-1 U13-3
Ule-12 Ue5-11

U27-8
Ue-4 U45-6 0V30-22
021-13 U4-10 U3l-6
U3-12 Ub4-2 Ubd4-14

U44-11
U15-2

U59-4

-63 U4-12

Ut-2 U15-5
U3l-5 Ui15-1z
Ull-2 U72-37

Uld-64

U30-27 U29-27

15-3

029-22

Ue8-15 U1CG-5

J5-31

u3l-9

uz28-21

Ug4-5 Ull-6 U72-32 U30-8

Ull-i8

\

Ul4-63 UlS5-1

030-10 U29-10

u21-27
029-8 U28-8
u72-9 U31-33

\

u29-
R5-1
R6~1
R7-1
R8-1
Us6-8
U68-17
u71-3
Ule-9
U61-13
us8-12
U56-13
U65-15
uz2-17
Ul-12

12 027-12
S1-1 U31-14
$2-1 U31-15
$3-1 U3l-le
54-1 U31-17
05-5

U74-11 UT7-4
Ug2-4

Ue5-14 UB4-2

U11-7

030-7 029-7

U58-6¢ U59-2 U59-3 U60-1 U63-9

062-8
059-12 U13-2

U66-15 U44-5 U44-12

J5-18 Ul4-18
Ule-3 J5-29

Ull-38

Ul-15 J5-5 Ul4-5 U15-19

U84-4 UT4-5 UB5-5
U84-13 U72-34
U88~13 U72-18
Usg-1 U72-19
U73-13 U72-26
U73-10 U72-25
U72-71 U78-8

U83-7 U74-2 U85-2
U83-4 U74-1 U85-1
Ue~-8 U5-1

U13-5 Ul3-8

R33-1 U20-4

076-9 U078-37

R20-1 R21-1 R22-1
Ul%-2 U07-3

U43-8 U42-3

uge-9 U78-14

Ul7-2¢ 04-11 05-2
U7-5 U8-4

U19-4 U7-15

U45-9 U56-6

ugd-1 U74-6 UB5-6
U20-6 0U10-7

U76-19 U63-4 U63-13
U20-2 011-24 R3-1
U7e-16 U63-5 U78-2
U69-7 U86-14 UBS5S-11
Ug-13 Use2-1

U45-10 U5-8

U75-2 U62-4

Ue3-6 U78-39

U76-2 U63-12 U78-5
Us0-9 080-13 U70-1
Usl-12 U82-12

u1z2-2

U70-4

U13-11 U31-35

U70-10 Usg2-2

u28-7

uz21-1

Ul4-29

veB-16 U74-16
U75-13 U83-3
ugég8-12 U74-14
Us7-6 U5-12
U69-5 UB6-17
U69-16 UB5-16
Jz2-2 U1z2-1
J2-3 U12-13
U1-13 U42-4
U25-1 U25-9
Uso-1 Us1-2
U71-9 U79-8
U60-2 UB0-5
020-9 U10-3
U20-7 UL0-4
Ul1-13 U12-10
R34-1 U25-15
U63-11 U78-6
U76-12 U78-3
Ue8-18 U074-17
Ug9-3 Us6-18
U75-4 U83-13
U75-~12 U83-6
U73-6 U72-24
U4-5 U5-6
04-1 U5-11
U1l1-35 Ul3-6
gli-5 Uilz2-9

U60-14 U19-5
U44-2 U64-13
Ull-14 ulz-11
U4-2 U5-9 Ul
U57-4 U%-5
U57-9 Ul5-16
g22-12 U57-3
U20-12 Ull-15
U3-17 U49-2
Uz9-18 U027~

Ug8-9 U74-13
Ug2-3 072-17
022-6 U21i-5
Ul12-1 €15-1
J6-2 U11-33
Ul6-3 J5-24
Ui6-~17 J5-33
R80-1 J5-61
R77-1 J5-589
U20-15 J5=-57
R78-2 J5-54
Ulé-4 J5-25

U71-21
Ur2-21
ur1-25

ug5-10
urr-2

R21-2

U78-32
U6l-5 U70-2

U60-15

U77-23
U85-9
U72-30
u72-28
U78-13

5-13

Us-5
R2-1
U49-14
18
Ut7-3
y7e-12
U8-6 U9-6

Ue8-4

U13-9 R31-1
014-24

U14-33
U14-61

Ul4-59

Ul4-57
Ul4-54

U14-25

Ug2-7

Ul0-16 Ur1-25 U72-14

ci-1

031-28

Ul-5 U25-5

J5-16 Ul4-16 U2-3

U3-1 023-1 U15-17

-2 U4-6

U26-2 Ul4-65

U45-8 U24-5 U4-13

U24-4 Ul9-6

U26-9 U56-4 Ul5-9

U1-11 R10-2 R9-2 C5-1 CR1-2

R22-2 J2-20

J2-5 Ulz2-8 R20-2

J2-4 012-14

011-17 J6-3

u?3-7 U74-19 U85-19

Ue2-6 UT4-20 U85-20

U73-12 U74-23 U85-23

U13-9 074-22 U85-22

Uil-11 0l2-12

U12-3 Cl15-2

U12-4 C17-1

uso-7

R10-1 56-1

U3-19 U23-19 057-8

(J22-16 U8-2 U%-2

U22-15 UB-3 US-3

Ul7-11 U5-4

U4-3 U4-9 Ul0-1 U010-11

U3-16 U50-2 U50-14 0U68-6 U10-15 011-20 U72-13
031-2% U29-17 027-17

U64-9 U24-6

U6-6 U59%-6

056-11 U4-8

Uel-8 U79-12

Uel-11 US59-11

us57-5 U8-12

U56-2 U067-14 U44-6

U45-2 ug-7 U28-20 U27-20

us8-1 U8-15

U44-8 Ue3-10

U57-12 U58-10

U58-5 U59-9 Ue4-11

058-9 U58-13 U64-10

022-19 U66-13 U8-1 1U9-1

022-7 J5-67 Ul4-67 U15-18

U2-13 J5-20 Ul4-2Q

U2-14 J5-21 Ul4-21

U2-17 J§5-22 Ul4-22

R79-2 J5-53 Ul4-53

U4z2-1 uUd2-7

ure-17 U87-16

B-8

T

T

U76-13 U87-12
U76~8 U87-9

U4-4 05-3

Ul2-6 Clé6~2

U5%-10 U59-14
U76-4 U87-5

Usg-11 J3-9

veg-3 J3-8

R73-2 R71-2 J3-7
Ui2-5 cC17-2

Ul8-8 UB2-9 U25-13
U71-10 ©U71-11
058-3 U58-4

R32-1 J6-1 CcC6-1
U76-14 U87-15
076-3 U87-2

U71-6 U082-5

U71-8 Ug2-13

R67-2 Q2-1 0Q1-2
U76-7 UB7-6

R68-1 R70-1 U88-6
R28-2 U33-2

R30-2 U33-6

R16-2 U47-2

R18-2 U47-6

U71-1 U8l-¢

R70~2 R72-2 R66-2 Q2-2
R71-1 Q1-1

R61-1 R62-1 R6E3-1 R64~1 RE5-1 U78-1
076-18 UB7-19

J2-7 R4-1

R35-1 DS1-2

! GROUND NODES

R73-1 U1-3 U1-9 U2-1 U2-10 U3-10 Us-7 Ule6-1 \
Ul6-10 U22-1 U22-10 U23-10 U26-7 U26-10 U34-16 \
U35-16 U36-16 U37-16 U38-16 U39-16 U40-16 U41l-16 U43-7 \
U45-7 U048-16 U49-16 U50-16 US1-16 US52~16 U53-16 A\
U54-16 US55-16 TU56-7 U61-7 U65-8 U66-8 U67-8 UE7-12 A\
U68-10 U69-10 U70-7 U71-7 U?5-8 U76-1 U76-10 A\
U79-7 UB1l-7 UB6-1 UB6-3 UB6-4 UB6-10 U87-1 U87-10 \
U88-2 UB8-5 UBB-7 UB8-10 U17-7 \
Udi-2 U42-8 U42-12 U42-14 U42-15 US57-7 U58-7 U44-7 \
U59-8 UB2-8 Ue0-8 U73-8 U73-15 U83-8- UB3-15 U849-8 \
U84-15 Ued-7 U24-7 U19-7 U20-5 uU20-8 U21-8 \
J5-9 J5-35 J5-60 U4=-7 U5-7 \
R4-2 U7-8 U8-8 U9-4 U9%-8 Ul0-8 \
ule-10° Ul0-13 U10-17 Ul0-18 D11-22 J3-1 J3-6 \
U12-15 C16-1 UL3-7 J4-6 Ja-7 J4-8 J4-9 S4-2 $3-2 \

52-2

U72-20 U85-~12 UB5~18 U77-14
U78-15 U078-20 U78-21
029-14 ©28-14
U15-10 cC1-2 Cé6-2 C7-2 \

U78-10
U31-7
Ul5-6
U18-7

| POWER

Ulg-1 D
R7~2
R61-2
Ul-18
022-3
028-8
U45-14
U53-8
Uus7-10
U76-20
U88-14
R26-2
Us8-14
Us59-16
U24-14
U20-16
U7-16
U13-14
U25-3
U32-20
J6=5
U78~30
029-1
U15-15

! UNUSED

U26-3
073-4
075-3
U75-6
U75-11
U75-14
uae-2
U86-5
U15-4
U59-7
U42-5
U42-6
U42-13

B-10

81-2 8§6-2 U25-8 (C5-2 U32-1
U46-10 U46-19 Q2-3 Ue62-7 U63~7 U74-12 U74-18 J6-4 C4-2 C13=-2 \

U30-14
U15-7
R35-2 R77-2
NODES

51-1 R1-1
RB8-2 U80-14
R62-2 R63-2

U2-20 U3-20 U6-1 U6-12 U6-14
022-20 U023-20 U2e6-14
U39-8 U40-8 DU41-8 U43-1

U47-3 U47-1
U54-8 U55-8

Us7-16 U68-20 UVe9-20 UT0-14

u79-1 U79-1
U17-1 ULT-2
R9-1 J5-62

U4d-4

Ul9-14 020-
U21-16 J5-3
Ug-16 U%-16
J4-10 J4-11
U25-4 U025-10
046-20 Q1-3
U72-36 UT2-40
u78-34 U78-
U29-28 U28-1
U1s5-20

OUTPUTS

R80-2

R64-2

u27-1

cg8-2

R34-2 R33-2 R3-2
R32-2 R31-2 R68-2
1-1 U1-6
U16-20 \

R65~2 U

U34-8

U32-10 U32-19 U46-1

U17-20 Ur7-22
U78-22 U78-23 U78-24
4 U14-9 U©14-35 Ul4-60

C9-2 21-1

078-9

\

\

u78-31

U33-3 033-14 R5-2 Re-2

R69-2 Re7-1
U1-17

U35-8 U36-8 U37-8

U43-2 U43-14 \

4 U48-8 U49-8 (50-8 U51-8 U052-8
Ue5-16 U66-16

U56-14

4 U8l-1
U17-14
Ul4-62

U44-10 U44-14
U82-16 Us0-6 U6G0-16 073-16

1 U20-3
0 U4-14
U10-14

Cl-1 J4-12

U25-11
Us2-14
U85-24

Usl-14

U71-14

U715-1

4 U86-20 U87-20 U88-12
R78-1

R66-1
U42-16
058-1

Uz20-10
Us-14
U10-20

U25-12
U63-14
v77-1

R79-1
U57-14

\

U59-5 U59-15
U84-16 U64-14

U20-11
u7-4
Ull-44

U25-14
U14-24
u77-217

35 U78-40 U31-26 U30-
027-28 U14-390

Uz28-28

u21-1

U83-16

\

1

U20-13

\

\

U75-16

\

\
\

R2-2 Ul2-16

J4=-13 U25-2 \
Uz25-16 CR1-1

\
u?1-28
U30-2

8

u18-17
\

U15-14

A\

A\

\

\

\

\

\

\

\

\

A

/("“\

T

U42-11
U42-10
U42-9
043-3
U43-4
043-5
U43-6
U43-10
U43-12
U43-13
ue7-9
U31-13
U31-12
U31-11
U31-10
Ul1l-8
Ul1-40
011-3
Ul1-43
Ul1-492
Ul1-41
U11-32
Ul1l-31
Ul1-30
Ull-1s6
Ul1-29
U8-9
us-1
Us-15
U9-14
U9-13
Uo-12
U9-11
u9-10
021-12
U21-11
U21-10
U21-9
0231-7
025-7
U25-6
U20-14
Ul7-3
Ul7-4
017-5
U17-6
U17-10
U17-12
Ul7-13

*masters

! PROCESSOR ADDRESS LINES
U14-34
U14-33
U14-32
014-28
U14-27
U14-26
U14-25
U14-24

Ui4-23
014-22
014-21
014-20
U14-19
U14-18
U14-17
Ul4-16

Ul4-15
Ul4-14
Ul4-13
Uré4-12

! BUFFERED ADDRESS LINES
Uie-19 '
Ur6-16

Ul6-15

Ule-12

Ule-9

Ule-6

Ul6-5

Ule6-2

U2-19
u2-16
02-15
Uz2-12
uz2-9
U2-6
U2-5
uz-2

u22-19
U22-1i6
022-15
uz2z-12

AT

U22-9
U22-6
uz22-5

! PROCESSOR DATA LINES

Ul4-51
U14-49
U14-47
U14-45
U14-43
U14-41
U14-39
014-37

U14-50
Ul4-48
U14-46
U14-44
Ul4-42
U14-40
U14-38
Ul4-36

! BUFFERED DATA LINES
U23-18
U23-17
uz23-16
U23-15
U23-14
U23-13
uz23-12
U23-11

U3-18
U3-17
U3-16
U3-15
03-14
U3-13
U3-i2
U3-11

(This page is intentionally blank.)

T

e

Appendix C

Subprograms for

Functional Test and Stimulus
Programs

The following programs are included in this appendix:
abort_test
check_loop
check_meas
recover
Ist_conten

C-1

program abort_;est(ref)

EN SN R SN RN R N R N NN A N N S N A R DS NN R R R R R S RN N S A O
! FUNCTIONAL TEST of the Microprocessor Bus. !
! This program is called by many of the test programs after the test !
! program has found a failing clrcult. This program highlights the part!
! with the FAILED test attribute, changes all parts with a TESTING test !
! atrlbute to UNTESTED, and then checks to see if gfi has enough test !

| results to make an accusatlon. If an accusation exists then the
1 part and the test programs are terminated so that GFI can begln
1 troubleshooting,

none

: GRAPHICS PROGRAMS CALLED:

t

t

1

1

]

]

1

1 accusation ls displayed. oOtherwise a gfl hint 1s generated for the
1

1

I

!

1

!

!

! fall {part_number} Highlight part to be failed
1

1

1
1
1
1
! 1
| TEST PROGRAMS CALLED: !
!
!
!
I
1
!

declare
string ref
global numeric t2o
glcbal string array [1:107) part
global numerlc array {1:107] partatrb

The ref-pin of the failed part
Buffered I/¢ on /term2.

Part shape and positions
Attribute number cof part

| Next three ltems relate to Test window displayed by disply pcb().

global string testwindl = "\1B{12;63f\1B{0m\1B[1lm" ! Place text in line 2

global string testwind2 = “\1B{13;653f\1B{Om\1B[1lm" ! Place text in line 3

gleobal string undrtest = "\1B[15;66f\1B[Om" ! Place text in line 5
end declare

C-2

T

Sl e

! Highlight Falled Part.

n = instr(ref, "-")
if n = 0 then n = len(ref} + 1
ic_num = {val {mid{ref, 2, n-2),16}}

! convert decimal iec_num to hex

decl00 = 1o num / $100 .
decl0 = {lc_num - decl00 * $100} / 510

decl = (lc_num - declO0 * $100 - decl0d * $10}

hex_ic num = decl00 * 100 + decld * 10 + decl

fail{hex ic num)

! Change all parts with a TESTING attribute to an UNTESTED attribute and
! display GFI TROUBLESHOOTING in the test window.

for i =1 to 107
1f partatrb(i] = 2 then untested (i)
next
print on t2o ,testwindl,” GFI ¥, testwind2, " TROUBLESHOOTING"
priat on t2o0 ,undrtest," "

! If GFI has an accusation then display the accusation otherwise generate
! GFI Hints.

accusatlon = gfi accuse
if accusation = "" then
gfi hint ref
fault 'gfi hints generated' ' please run gfi'
else
fault '' ‘' accusation
end 1f

end program

program check_loop

PULE e E LI LI T I LR L e b L by b anrnrnerysy

! This program checks the DEMO/TRAINER UUT Loopback switches. If the
! loopback switches are not closed then a prompt 1s generated to close
! the lcopback switches. Otherwise no prompt is generated.

function pmpt 1pbk
declare
string g
end declare

print "Close 5W4-4, SW4-5 and SW6-4 for loopback®™
print "Press \1B[7m ENTER \1B[{m key to continue *
input g \ print

end function :

execute rs232_init(}

write addr $2006, data $hA
walt time $200

if {(read addr $2002) and $F) <> $D then
execute pmpt_lpbk ()
return

end if

write addr $201E, data $FF
write addr 52016, data $BB
walt time 5200

1f {read addr $2016) <> $BB then

execute pmpt_lpbk (}
return
end Lf

write addr $201C, data $FF

if {(read addr $201A) and 2} <> 0 then
execute pmpt lpbk {}
return

end if

end program

C-4

AT

L

program check_meas{dev, start, stop, clock, enable)

R e RN Ny RN N RN S NN P R RSN PR R AR A PRRaRtsRReeI LT

! Check status of External START, STOP, CLOCK, ENABLE lines,

1

N e R NN N RN N N R NN e e NN S R AR SRR PR RSN FRRARIREN T

R N N RN N R R Ry NN NN NN SN AR N SN NN R RN RR N DEE |

T
1
H

Return 1 if measurement is complete, display prompt to fix
! the external lines, walt for ENTER key, and return O if the

measurement. times out,

declare
declare
declare
declare
declare

RN RN e RN NN NN E NN N SRR S AR AR AR RR RN ARARERT,

string dev
string start
string stop
string clock
string enable

times =

0

lcop while checkstatus(dev) <> $F and times < 100
times = times + 1
end loop

If START

fails then 5TOP, ENABLE and CLOCK will also fail,

If ENABLE fails then CLOCK will also fail.

Diagnose cause of fallure and only display START 1f START fails.

! Do not display CLOCK when ENABLE line fails.

if times < 100 then

return (1}
else
tl = open device "/terml", mode "unbuffered"

! turn autolinefeed off and clear screen

print

*\1B[20\1B[201"

n = checkstatus{dev) \ str = " \]ing = nr

if (n
11
st

else

and 4) = 0 then
ne = line + “START “
r = str + " START to " + start + ",

1f {n and 8) = 0 and stop <> "*" thaen

line = line + "“sSTOP, "
str = str + " 5TOP to " + stop + ", "

end if
if (n and 2) = 0 and enable <> “*" then

el

line = line + "ENABLE "

str = str + * ENABLE to " + enable + ", "
se if (n and 1} = O then

line = line + "CIOCK "

str = str + " CLOCK to " + clock + ", "

end 1f
end if

print
print

"\1B[1;1£", "External line(s) “, line, "failed,"
"N1B(2;71f", “Connect*, str, "\1B[3;1f"

et

print "Press \1B[7mENTER \1BIOm to REPEAT, \1B[7mNQ \1B[Om to CONTINUEM

! Walt fer

ENTER key to be pressed,

C-5

input on tl1 ,str
print "\1B[20n\1B[2J"
close channel tl
if str = "\7F" then
return(l}
else
return {0)
end f

end 1f
end program

T

program recover

R N e RN N RN R N RN R RN RN R A NN R RN R RN RN A NN RN SRR NeR R e e
| This program recovers sync between the 82288 Bus Controller and the |
1 B0286 pod. - 1
1 !
! Some of the stimulus programs disable ready before performing stimulus!
! which can cause the 80286 bus controller to get out of sync with the |

! pod. The recover{) program is executed to resynchronize the bus !
| contreller and the pod. !
1]
! TEST PROGRAMS CALLED: !
I {none) !
! 1
| GRAPHICS PROGRAMS CALLED: 1
I {none) !
1 !
! Global Variables Modified:

! recover times Reset to Zero t
R e e N N R N N N R N NN NSNS NN RN SRR NN RS
e R R RN R RN N NN S NN S NN NN SRR RSN RN RN
! Main Declarations !
B R R N NN e n N RN N RN N RSN RN RSN NAN NS

declare global numerie recover_times ! Count of executlng recoveri).

!

! Main part of STIMULUS PROGRAM . f
t

recover_times = recover times + 1
if recover_times <= 1 then
podsetup ‘enable ~ready' "off" ! POD is out of sync with
setspace (get space ("memory”, "word"}) ! the 82288 bus controller
read addr O ! Read in memory space then
write addr O, data ! Write in memory space to
podsetup ‘enable ~ready' "an" ! synchronlze 82288 and POD,
else
podsetup "enable ~ready' "off"
print "Please press the \1B[7mUUT RESET KEY \1B[Om"

loop until (readstatus{) and 510} <> 0 1 walt for RESET active.
end leoop
podsetup ‘enable ~ready' "on"

loop until (readstatus{) and $10) = 0 ! wait for RESET inactive.
end loop
print "\1B[2J"
end if
end program

program tst_conten (addr, data_bits)

NN RS R R R R R R S R R R S R A S N R N AN S NN RS NN RS NN RS RN
TEST to isolate DATA BUS CONTENTION to the falling part.

This program attempts to determine the cause of Data Bus contention by
testing the enable lines of all the devices on the Data Bus. This
program parforms several steps. Flrst each device on the data bus 1s |
accessed and determined to be accessible or inaccessible. The
variable bad dev is a mask that records which devices falled.

Many times when Data Bus contention exists, the device that has the
bad enable llnes can be accessed and the rest of the devices cannot be
accessed. Thls program checks the mask to see 1f all except one
device is bad and then tests the enable lines on the device that
appeared geood.

If all devlces are bad or more than one device ls geod then this test !
checks the enable lines of all the devlices on the Data Bus by brute
force.

1

I

I

t

1

1

]

]

!

!

!

]

1

]

]

1

1

1

TEST PROGRAMS CALLED: 1
abort_test (ref-pin} 1f gfi has an accusation !
display the accusatlon else !

create a gfl hint for the !

ref=pin and terminate the test!

pregram (GFI begins trouble- |

shoot 1ng} . !

1

FUNCTIONS CALLED: 1
testic {refname, pinl, pin2} This function performs a gfi !
test on refname. Then the pins!

pint and pin2 {which are the !

enable lines) are checked to 1

see 1f they are bad., If so !

abort test 1s called and GFI is!

started on the falling enable !

line. <Ctherwise all test info !

about the part is discarded !

using the gfi clear command. 1
!!!!!!!![III1II‘||!!![!!!!!!]!!!!![!!II]Il1]III]ll[IIIIIII]!IIIII!I[III[]

""!!!!!!l!'.!!!!!!‘!!!!!!!!!!!!!!!!!!!I!!!!!!!!!!!l!!!!!!!!'!!!!!!!!!!!!
declare

numer {'c addr

numeric data bits

numeric bad_dev = 0

numeric array [0:515]) ram ic

global string contention checked
end declare

Address where failure occured.
Mask of failing data bits.
Mask to record falllng devices
Convert RAM bit to part number
Record that this test ran.

NI R R RN R R R R R RN N R RN S RN N NN R RN RN R RN R R R AR AR R R R R NN RN A Y]

1 Functions !

function testic (ref, pin_a, pin b}
declare numeric ref
declare numeric pin a
declare numeric pin b

RN SRR RN R RN RN RN RS SRR SR RNTSERERNSNNIS

Pl

| convert decimal ref to hex

decl00 = ref / 100
decl0 = (ref - declQD * 100} / 10
decl = (ref - decl00 * 100 - decl0 * 10}
href = decl00 * $100 + decl0 * $10 + decl

ref a = "U" + strihref,16) + #=" + stripin a,16)
ref b = "U" + str(href,16) + "= 3 str(pin_b,16)

if gfil test ref a fails then
if {grl status ref_a) = "bad" then
abort_test (ref_a)
else
if {gfi status ref b} = "untested" then gfi test ref b
1f (gfl status ref_b) = “bad" then
abort_test (ref b)
end iFf
end 1f
gfl clear | Only looking at Enable Lines, Clear Other Info.
end if
end function

ram icf0] = 55 A ram icll] = 54 ! REMs US5, US54
ram ie[2) = 53 \ ram ic(3) = 52 { RAMs U53, U52
ram 1e[4] = 51 A\ ram ic[5) = 50 ! RAMs U51, US0
ram ic[6] = 49 A\ ram ic{7] = 48 ! RRMs U49, U48
ram jc(8] = 41 \ ram _ic[9) = 40 ! RAMs U41, U40
ram ic(10] = 39 \ ram ic[11) = 38 ! RAMs U39, U038
ram_ic[12] = 37 \ ram ic[13) = 36 ! RAMs U37, U3¢
1

ram 1e[14)] = 35 ram ic[15] = 34 RAMs U35, U34
if contention_checked <> "yas" then

contention_checked = "yes"

podsetup ‘report intr' "off"

podsetup 'enable ~ready' "on"

print "\nl\nlTESTING BUS CONTENTION"

Read from each device on the bus and record if each device reads correctly.

Then check and see 1f all components are bad except one. If so then check
that compeonent's enable lines,

Otherwise brute force check all enrable lines on 21l components connected to
the bus,

! ROMO and ROM1
setspace{ getspace("memory", "word")}
if {read addr $E002R} <> 0 then bad_dev = bad dev or 1
if (read addr $F0022) <> O then bad_dev = bad_dev or 2
! Dynamic RAM
write addr $1000, data $FFFP
1f (read addr $1000} <> $FFFF then bad dev = bad_dev or 4
write addr $1000, data 0
If (read addr $1000)} <> 0 then bad dev = bad dev or 4

! PIA reglsters

execute pla_Init{)

if (read addr $4002) <> $FF then bad_dev = bad dev or 8
write addr $4002, data 0

if {read addr $4002) <> 0 then bad_dev = bad dev or B

! DUART reglsters

execute rs232_init()

if (read addr $200A) <> $11 then bad dev = bad_dev or $10
if {read addr $201A} <> S$FF then bad dev = bad dev or $10
1f {read addr $2012) <> $C then bad_dev = bad dev or $10

t video Controller registers

execute rs232_init ()
if {read addr 8} <> SFF then bad dev = bad dev or $20
1f (read addr $A) <> 0O then bad dev = bad dev or $20

! If only one device 1s good, CLIP and check enable lines on that device.

1f bad_dev <> 0 and bad_dev <> $3F then
1 CLIP and Check Enable lines on ROMs
if bad dev = $7E then
if {data bits and $FF) <> 0 then
testic(29, $20, $22)
end if
if {(data_bits and $FFQ0} <> 0 then ! High data bits are bad
testic{30, %20, $22) Check high byte RCMO.
end if

Low data bits are bad
Check low byte ROMO.

else if bad dev = $7D then
if {data_bits and $FF} <> 0 then ! Low data bits are bad
testic{27, $20, $22) Check low byte ROMO.
end 1f
if {data_bits and $FF00} <> O then
testic{28, $20, $22)
end 1f

High data bits are bad
Check high byte ROMO,

else if bad dev = $7B then
testle (ram_ic(msb({data bits}], $15, 4} ! Check RAM.

else if bad dev = $77 then
testic (31, 6, 6}

else 1f bad dev = $2F then
testic (11, $39, 9)

else 1f bad dev = $1F then
testic (72, 2, 3}

end if

end if

Check PIA.

Check DUART.

Check Video Controller

! BRUTF. FORCE check enable llnes of all devices on bus.

if (data_bits and SFF) <> O then ! Low data bits are bad
testic (27, $20, $22} { Check low byte ROMO.
testic{29, $20, $22)

end 1f

High data blts are bad

if (data_bits and $FFOC} <> 0 then
Check high byte ROMO.

testic(28, $20, $22}
testic{30, 520, $22)
end if
testic (ram lc[msb(data bits)}, $15, 4)
testic (31, 6, 6)
testic (11, $£39, 9}
testle (72, 2, 3)

Check RAM.

Check PIA.

Check DUART.

Check Videc Controller

s

testic (10, 511, 1) ! Check Interrupt Buffer
if bad dev = $3F then
if (data bits and $FF) <> © then
i1f gfi test "U3-1» falle then abort_test ("U3-1")
end 1f
if (data_bits and $FF00) <> 0 then
1f gfi test "U23-1" falls then abort_test {("U23-1*}
end 1f
end if

print. "BUS CONTENTION TEST PASSES"
end if
end program

C-12

(This page is intentionally blank.)

Appendix D
Demo/Trainer UUT
Schematics

D-1

/(F“r-\

——

Index

"masters, 4-5, 7-13

ABORT_TEST program, 4-262

Acoustic and visual characteristics, 4-380

Active edge, 8-1

Active interrupt lines, 4-8 See also interrupts

ADDR_OUT stimulus program, 3-12, 4-20
used in other chapters, 4-263, 4-283

ADDR_OUT response file, 4-22

Address buffers, 4-246

Address Decode functional block, 4-273
example, 4-276
keystroke functional test, 4-277
programmed functional test, 4-282
stimulus programs and response files, 4-283
summary page, 4-289
testing and troubleshooting, 4-273

Address decoder, 4-273

Address latch, 4-273

Address space, 4-14, 8-1

Aliasing, 8-1

arm command, 3-21

Assert, 8-1

assoc command, 3-19

Asynchronous, 8-1

Asynchronous level history, 2-7, 4-245, 7-8

Asynchronous signals, 7-7

Index-1

Index-2

Automated test, 8-2
Automated troubleshooting, 8-2

Backtracing, 2-12, 6-1, 8-2
path, 7-14
Baud-rate timing, 4-1563
Bidirectional lines, 3-10, 7-13
Blinking cursors, 4-180
Breakpoints, 4-8, 5-7
Built-in fault condition exerciser, 7-23
Built-in tests, 3-24, 4-3
Microprocessor Bus, 4-7, 4-10
RAM, 4-7, 4-59
ROM, 4-7, 4-33
Bus, 8-2
arbitration, 4-248
contention, 4-14, 4-33, 8-2
controller, 4-351
cycles, 2-1, 4-7, 4-331
emulation, 4-3
exchange, 4-9, 4-248
masters, 4-5, 7-13
Bus Buffer functional block, 4-243
example, 4-250
keystroke functional test, 4-251
programmed functional test, 4-262
stimulus programs and response files, 4-263
summary page, 4-272
testing and troubleshooting, 4-243

CAD, 8-2

Calibration, 7-8

CAS, See Column Address Strobe

CAS_STIM stimulus program, 4-88, 4-92

CAS_STIM response file, 4-94

Character generator, 4-233

Clearance, 4-3

¢lip command, 3-19

Clip module, 2-10, 3-19

Clip module name, 3-19

Clock and Reset funclional block, 4-281
example, 4-293
keystroke functional test, 4-294
programmed functional test, 4-300
stimulus programs and response files, 4-301

Clock and Reset functional block, (continued)
summary page, 4-312
testing and troubleshooting, 4-291
Clock signal, 7-5, 7-7
Clocked level history, 2-7, 2-9, 2-10, 4-246
Color look-up table, 4-177
Column Address Strobe (CAS), 4-75
Comment, 8-2
Component, 8-2
Component exiraction tool, 4-3
Connectors, 4-250
Control lings, 4-247, 8-2
Coprocessor cycles, 4-9
Coupling fauit, 4-61
CRC signature, 2-10, 3-19, 4-245, 7-5, 8-2
Crystal oscillator, 4-154, 4-291
CTRL_OUT1 stimulus program, 3-16, 4-28
used in other chapters, 4-263
CTRL_OUT1 response file, 4-30
CTRL_OUT2 stimulus program, 3-16, 4-266
CTRL_OUT2 response file, 4-268
CTRL_OUTS3 stimulus program, 3-16, 4-269
used in other chapters, 4-329
CTRL_OQUTS response file, 4-271
Cursor, 8-2
Cursor timing output, 4-203
Cycles
bus, 2-1, 4-7, 4-331
coprocessor, 4-8
refresh, 4-9, 4-75, 4-79, 4-81
Cyclic Redundancy Check (CRC), 2-6
See also CRC signature

Data bus, 8-3

Data Compare Equal (DCE) condition, 2-10

Data exchange protocol, 4-116

Data tied to address, 4-38

DATA_OUT stimulus program, 3-16, 4-17, 4-24
used in other chapters, 4-263

DATA_OUT response file, 4-26

DECODE stimulus program, 4-283, 4-286
used in other chapters, 4-46, 4-322

DECODE response file, 4-288

Delay line, 7-9

Delay parameter, 4-61

Index-3

Index-4

Demo/Trainer UUT, 3-2, 4-1, 4-10, 4-63, 6-3
Device, 8-3
Device name, 3-20
Diagnostic messages
bus test, 4-6
RAM test, 4-62
ROM test, 4-36
Diagnostic program, 3-8, 6-1
Diagnostic strategy, 6-3
DIP, 8-3
Direction control signals, 4-248
Directory, 8-3
Discrete 1/O, 4-117
DMA controllers, 4-9
Downloading programs to the UUT, 5-8
Drivability, 3-4, 8-3
Drive capability, 2-9
DTACK, 4-248, 4-331
Dual UART (DUART), 4-155
Dynamic coupling, 8-3
Dynamic RAM, 4-59, 4-75
adjusting sync timing tor, 7-11
multiplexed address, 4-75
refresh, 4-9, 4-75, 4-79, 4-81
Dynamic RAM Timing functional block, 4-75
example, 4-79
keystroke functional test, 4-83
programmed functional test, 4-88
stimulus programs and response files, 4-89
summary page, 4-113
testing and troubleshooting, 4-75

Edge, 8-3
Edge-sensitive inputs, 4-116
Edit key, 7-18
Editor, 7-17
Electromechanical devices, 4-117
Emulative testing, 2-2 :
speed of emulation, 5-8
enabled_line_timeout fault condition, 4-351
Examples
Address Decode, 4-276
Bus Buffer, 4-250
Clock and Reset, 4-293
Interrupt Circuit, 4-316

T

Examples, (continued)
Microprocessor Bus, 4-10
Parallel /O, 4-118
Dynamic RAM Timing, 4-79
RAM, 4-63
Ready Circuit, 4-334
ROM, 4-39
Serial IO, 4-155
Video Control, 4-206
Video Qutput, 4-180
Video RAM, 4-233

EXEC key, 4-381

Exerciser, See fault condition exerciser

External clock signa! (sync), 2-10, 7-9

External control lines, 2-10

External /O lines, 4-151

External synchronization, 8-3

Fault, 8-3
fault command, 6-8, 6-9
Fault condition, 6-8, 7-23, 8-3
enabled_line_timeout, 4-351
exerciser, 7-23, 8-4
forcing-line, 4-350
handler, 3-8, 5-8, 6-1, 6-8, 8-4
raising, 8-4
ram_component, 4-66
rom_address, 4-44
rom_comp, 4-44
Fault coverage, 3-11, 5-3, 4-244
Fault isolation, 2-11
Feedback loop, 8-4
breaking, 4-380
Interrupt Circuit, 4-313
Ready Circuit, 4-331, 4-335
Forcing lines, 4-379, 8-4
Forcing signal conditions, 4-9
Forcing-line fault condition, 4-350
FRC_INT program, 4-160
Freerun clock, 2-9
Frequency, 2-7, 2-9, 4-246, 7-7
Frequency min-max, 4-79, 4-292
FREQUENCY stimulus program, 4-301, 4-310
used in other chapters, 4-89, 4-176
FREQUENCY response file, 4-311

index-5

Index-6

Functional block, 3-1, 3-11, 3-16, 4-1

Functional test, 1-5, 2-13, 3-8, 5-8, 8-4
TEST_BUS, 4-14
TEST_BUS2, 6-18, 6-17
TEST_PIA, 4-124
TEST_PIA2, 6-20, 6-17
TEST_RAM, 4-66
TEST_RAM2, 8-24, 6-17
TEST_ROM, 4-44
TEST_ROM2, 6-27, 6-17
TEST_RS232, 4-160
TEST_RS2328B, 6-29, 6-17
TEST_VIDEO, 4-186
TEST_VIDEO2, 6-31, 6-17
TST_BUFFER, 4-262
TST_CLOCK, 4-300
TST_COCNTEN, 4-15
TST_DECODE, 4-282
TST_INTRPT, 4-322

used in other chapters, 4-160

TST_READY, 4-348
TST_REFRSH, 4-88
TST_VIDCTL, 4-216
TST VIDRAM, 4-238

getoffset command, 4-77, 7-9

GFl, See Guided Fauit Isolation

GFl hints, 2-13

GFl key, 7-2

GFI procedures, 1-5

GFI summary, 8-4

GFli troubleshooting, 2-12, 7-2

gfi control command, 3-19

gfi device command, 3-19

gfi hint command, 3-8, 6-1, 6-9

gfi test command, 3-8, 3-24

Glitches, 7-8

Go/no-go test, 4-2, 5-1, 5-3, 6-1, 6-3, 8-4
GO_NOGO2 diagnostic program, 6-11
Ground, 4-4

Guided Fault Isolation (GFI), 1-5, 2-12, 3-12, 8-4

Handler, See fault condition handier
Hexadecimal, 8-5

AT

AT

HOLD line, 4-10
HOLDA iine, 4-10

In-circuit component tests, 4-381
In-circuit emulation, 2-2
Inltialization, 3-10, 3-17, 4-116
Parallel VO, 4-126
RAM, 4-67
Serial /O, 4-162
Video RAM, 4-238
Interface pod, See pod
Internal address bus, 4-246
Internal operating modes, 4-116
Internal sync, 2-10
Interrupt acknowledge cycle, 3-16, 4-315
Interrupt Circuit functional block, 4-313
example, 4-316
keystroke functional test, 4-316
programmed functional test, 4-322
stimulus programs and response files, 4-322
summary page, 4-329
testing and troubleshooting, 4-313
INTERRUPT stimulus program, 4-322, 4-326
INTERRUPT response file, 4-328
Interrupt response file, 4-328
Interrupts, 4-8
Interrupt vector, 4-313
110, 8-5
/O module, 2-4, 2-10, 3-17, 7-1, 7-11, 8-5
adjusting sync, 7-9
breakpoints, 5-7
calibration, 7-8
YO module adapter, 2-10
17O module name, 3-20

Kernel, 4-5

KEY_1 stimulus program, 4-126, 4-130
KEY_1 response file, 4-132

KEY_2 stimulus program, 4-128, 4-133
KEY_2 response file, 4-135

KEY_3 stimulus program, 4-126, 4-136
KEY_3 response file, 4-138

* KEY_4 stimulus program, 4-128, 4-139

KEY_4 response file, 4-141
Keys, 4-117

Index-7

Index-8

Keystroke functional test
Address Decods, 4-277
Bus Buffer, 4-251
Clock and Reset, 4-294
Interrupt Circuit, 4-316
Microprocessor Bus, 4-10
Parallel I/Q, 4-118
Dynamic RAM Timing, 4-83
RAM, 4-63
Ready Circuit, 4-335
ROM, 4-39
Senal /O, 4-156
Video Control, 4-208
Video Output, 4-181
Video RAM, 4-233
Keystroke mode, 1-5
Known-good UUT, 3-10, 3-12, 7-4

LEARN function, 7-4, 7-7

Level 1 programming, 1-3

Level 2 programming, 1-3

Level 3 programming, 1-5

Level 4 programming, 1-5

Level history, 2-7, 2-8, 7-8, 8-5

LEVELS stimulus program, 4-217, 4-226
used in other chapters, 4-238

LEVELS response file, 4-227

Library, 8-5

Line numbers, 3-20

Local address bus, 4-246

LOOP key, 7-23

L.oopback, 4-151

Machine code, 5-8

Mapped address bus, 4-246

Marginal signals, 4-292

Marginal signature, 7-5

Mask, 8-5

Masters, 4-5, 7-13 .

Measurement device, 3-17
calibration, 7-8

Memory arbitration circuit, 4-205

Microprocessor Bus functional block, 4-3
example, 4-10
keystroke functional test, 4-10

P

Microprocessor Bus tunclional block, {continued)
programmed functional test, 4-14
stimulus programs and response files, 4-17
summary page, 4-31
testing and troubleshooting, 4-5

Microprocessor kernel, 4-5

Milliohmmeter, 7-25

Min-max, 4-79, 4-292

Monitor, 8-5

Msgs key, 7-18

Multiple faflures, 6-10

Multiplexed address, 4-75

Net list, 7-11

Node, 8-5

Node activity, 5-3

Node characterization, 2-6
Node list, 2-12, 7-11, 8-5
Noise, 4-292

Normal mode, 2-9

Open circuit, 7-24

Operator, 8-5

Operator's display, 8-6

Operator's interface, 8-6

Operator's keypad, 8-6

Qutput loaded, 7-24

Overdrive, 2-9, 2-10, 4-4, 4-206, 4-331, 4-381, 8-6
Overlapped ramping operations, 4-244

Paralle! I/O functional block, 4-115
example, 4-118
keystroke functional test, 4-118
programmed functional test, 4-124
stimulus programs and response files, 4-126
summary page, 4-149
testing and troubleshooting, 4-115

Part description, 7-12, 8-6

Part fibrary, 2-12, 7-11, 7-12, 8-6

Partitioning the UUT, 3-1

Pattern sensitive fault, 4-61

Patterns, 2-1, 3-19

Peripheral devices, 4-313

PIA_DATA stimulus program, 4-142

PIA_DATA response file, 4-144

Index-2

PIA_INIT initialization program, 4-126, 4-148
PIA_LEDS stimulus program, 4-126, 4-145
PIA_LEDS response file, 4-148
Pin coverage matrix, 7-21
Pin numbers, 3-20
Pin number parameters, 3-21
Pod Address Sync, 2-9, 3-16, 4-77
Pod Data Sync, 2-9, 3-16, 4-77
Pod, 2-4, 2-9, 4-3,5-8
library, 8-6
pod breakpoints, 4-8, 5-7
synchronization, 8-6
podsetup command, 4-5
Power supply, 4-3
Priority pin, 8-6
Probe, 2-9, 3-17, 4-292, 7-1, 7-11, 8-6
adjusting sync, 7-9
calibration, 7-8
injecting faults with, 5-3
Program library, 8-6
Programimable Interface Adapter (PIA), 4-115
Programmable Interval Timer (PIT}), 4-115
Programmed functional test
Address Decode, 4-282
Bus Buffer, 4-262
Clock and Reset, 4-300
Interrupt Circuit, 4-322
Microprocessor Bus, 4-14
Parallel /O, 4-124
Dynamic RAM Timing, 4-88
RAM, 4-66
Ready Circuit, 4-348
ROM, 4-44
Serial /O, 4-160
Video Control, 4-216
Video Qutput, 4-186
Video RAM, 4-238
Programmer's interface, 1-5, 8-7
Programmer's keyboard, 8-7
Pull-up resistors, 4-4

Quality characterization, 2-6

Raise, See fault condition, raising
RAM FAST test, 4-59

Index-10

—.

o

Pl

RAM FULL test, 4-59
RAM QUICK test, 4-59
RAM TEST key, 4-63
RAM

dynamic, 4-75
sync timing, 7-11
testing, 4-59
ram_component fauit condition, 4-66
RAM_DATA sfimulus program, 4-67, 4-70
used in other chapters, 4-126
RAM_DATA response file, 4-72
RAM_FILL initialization program, 4-67, 4-73
RAM functional block, 4-59
example, 4-63
keystroke functional test, 4-63
programmed functional test, 4-66 -
stimulus programs and response files, 4-67
summary page, 4-74
testing and troubleshooting, 4-59
Ramp function, 4-244
rampaddr command, 4-246
rampdata command, 4-247
RAMSELECT1 stimulus program, 4-89, 4-98
RAMSELECT1 response file, 4-100
RAMSELECT?2 stimulus program, 4-89, 4-101
RAMSELECT2 response file, 4-103
RAM Timing, See Dynamic RAM Timing
RAS, See Row Address Strobe
RAS_STIM stimulus program, 4-88, 4-95
RAS_STIM response file, 4-97
RD_CSCD program, 4-160
Read/Write strobe, 4-33
readout command, 3-21
Ready button, 3-17
Ready Circuit functional block, 4-331
example, 4-334
keystroke functional test, 4-335
programmed functional test, 4-348
stimulus programs and response files, 4-349
summary page, 4-378
testing and troubleshooting, 4-331
Ready signal, 4-248
READY_1 stimulus program, 4-349, 4-354
READY _1 response file, 4-357
READY_2 stimulus program, 4-349, 4-358

Index-11

READY_2 response file, 4-361
READY_3 stimulus program, 4-34¢, 4-362
READY_3 response file, 4-365
READY_4 stimulus program, 4-349, 4-366
READY_4 response file, 4-369
READY_5 stimulus program, 4-349, 4-370
READY_5 response file, 4-373
READY_6 stimulus program, 4-349, 4-374
READY_6 response file, 4-377
Reference designator, 3-20, 7-11, 8-7
Reference designator list, 7-11
Refresh, 4-9, 4-75, 4-79, 4-81, 4-75, 4-79, 4-81
Refresh cycle, 4-9, 4-75, 4-79, 4-81
REFSH_ADDR stimulus program, 4-88, 4-104
REFSH_ADDR response file, 4-106
REFSH_TIME stimulus program, 4-89, 4-107
REFSH_TIME response file, 4-109
REFSH_US56 stimulus program, 4-89, 4-110
REFSH_U56 response file, 4-112
Related input pin, 8-7
Repair, 7-24
Reset functional block, See Clock and Reset
RESET_HIGH stimulus program, 4-301, 4-304
RESET_HIGH response file, 4-306
RESET_LOW stimulus program, 4-301, 4-307
used in other chapters, 4-217, 4-283
RESET_LOW response file, 4-309
Response file, 3-12, 4-17, 7-4, 8-7
rom_address fault condition, 4-44
rom_comp fault condition, 4-44
ROM TEST key, 4-39
ROMO_DATA stimulus program, 4-46, 4-50
ROMO_DATA response file, 4-52
ROM1_DATA stimulus program, 3-16, 4-46, 4-53
used in other chapters, 4-263
ROM1_DATA response file, 4-55
ROM functional block, 4-33
example, 4-39
keystroke functional test, 4-39
programmed functional test, 4-44
stimulus programs and response files, 4-46
summary page, 4-57
testing and troubleshooting, 4-33
Row Address Strobe (RAS), 4-75, 4-78
RS-232 port, 4-154

Index-12

—

RS232_DATA stlimulus program, 4-163, 4-166
RS232_DATA response file, 4-168

RS232_INIT initialization program, 4-163, 4-175
RS232_LVL stimulus program, 4-163, 4-169
RS232_LVL response file, 4-171

Rules for stimulus programs and response files, 4-17
runuut command, 5-7

RUN UUT mode, 2-9

RUN UUT test, 8-7

Serial interface adaptor, 4-151
Serial I/O functional block, 4-151
example, 4-155
keystroke functional test, 4-158
programmed functional test, 4-160
stimulus programs and response files, 4-163
summary page, 4-176
testing and troubleshooting, 4-151
setoffset command, 4-77, 7-9
SETUP POD command, 4-5
SIA , See serial interface adaptor
Side (of /O module), 2-10, 3-17
Signature, See CRC signature
SIP, 8-7
Softkey, 8-7
Start signal, 4-180
State machine, 4-205, 4-331, 8-7
Static electricity, 4-117
Static logic levels, 4-4
Static RAM, 4-59, 4-61, 4-75
Status lines, 4-9
Stimulus and measurement capabilities, 2-7
Stimulus function, 7-23
Stimulus program, 3-6, 3-16, 4-17, 7-2, 8-8
Stimulus programs and response files
Address Decode, 4-283
Bus Buffer, 4-263
Clock and Reset, 4-301
interrupt Circuit, 4-322
Microprocessor Bus, 4-17
Parallel /0, 4-126
Dynamic RAM Timing, 4-89
RAM, 4-67
Ready Circuit, 4-349
ROM, 4-46

Index-13

Stimulus programs and response files, (continued)

‘Serial VO, 4-163
Video Control, 4-216
Video Output, 4-187
Video RAM, 4-238
Stop signal, 4-180
Storepatt command, 3-19, 4-383
String, 8-8
Stuck bus lines, 4-5
Stuck cells, 4-59
SUMMARY softkey, 7-17
Summary of GFI coverage, 7-17
Summary page
Address Decode, 4-289
Bus Buffer, 4-272
Clock and Reset, 4-312
interrupt Circuit, 4-329
Microprocessor Bus, 4-31
Parallef 110, 4-149
Dynamic RAM Timing, 4-113
RAM, 4-74
Ready Circuit, 4-378
ROM, 4-57
Serial /O, 4-176
Video Control, 4-229
Video Qutput, 4-202
Video RAM, 4-242
Switches, 4-117
SYNC key, 4-8
sync command, 4-8
Sync timing, 7-9
Synchronization mode, 2-8, 4-8, 7-8
with ROM, 4-39
Synchronous, 8-8
Synchronous level history, 2-7, 2-9, 2-10, 4-246
System address bus, 4-246
System clock, 4-249

Termination status, §-8

Test access, 4-3

Test access socket, 4-10

Test access switch, 4-10

Test function, 7-23

TEST_BUS functional test, 4-14
TEST_BUS2 funclional test, 6-17, 6-18

index-14

r—

TEST_PIA functional test, 4-124
TEST_PIA2 functional test, 6-17, 6-20
TEST_RAM functional test, 4-66
TEST_RAM2 functional test, 6-17, 6-24
TEST_ROM functional test, 4-44
TEST_ROM2 functional test, 6-17, 6-27
TEST_RS&232 functional test, 4-160
TEST_RS8232B functional test, 6-17, 6-29
TEST_VIDEO functional test, 4-186
TEST_VIDEQ2 functional test, 6-17, 6-32
Testing and troubleshooting, 2-1, 3-1

Address Decode, 4-273

Bus Bufter, 4-243

Clock and Reset, 4-291

Interrupt Circuit, 4-313

Microprocessor Bus, 4-5

Parallel /O, 4-115

Dynamic RAM Timing, 4-75

RAM, 4-59

Ready Circuit, 4-331

ROM, 4-33

Serial I/, 4-151

Video Control, 4-205

Video Qutput, 4-177

Video RAM, 4-231
Timeout, 8-8

- TL/1 programming language, 1-2, 1-6

Toggle, 8-8
togglecontrol command, 4-248
Transition count, 2-7, 2-9, 2-107, 4-246, 7-4, 8-8
Transition fault, 4-61
Troubleshooting, 2-1, 3-1, 6-1, 7-1, 8-8
TST_BUFFER functional test, 4-262
TST_CLOCK functional test, 4-300
TST_CONTEN functional test, 4-15
TST_DECODE functional test, 4-282
TST_INTRPT functional test, 4-322
used in other chapters, 4-160
TST_READY functional test, 4-348
TST_REFRSH functional test, 4-88
TST_VIDCTL functional test, 4-216
TST_VIDRAM functional test, 4-238
TTL_LVL stimulus program, 4-163, 4-172
used in other chapters, 4-322
TTL_LVL response file, 4-174

Index-15

UART, See Universal Asynchronous Receiver-Transmitter
Unguided Fault Isolation (UF1), 7-1

Unit Under Test (UUT), 1-1, 3-1, 4-3, 8-8

Universal Asynchronous Receiver-Transmitter, 4-151
Unprogrammed ROM, 4-38

Unstable signature, 7-5

Unused inputs, 4-4

Use of pod, 2-9

Userdisk, 8-8

UUT, See Unit Under Test

UUT clock, 4-4

UUT directory, See summary page

UUT go/no-go test, 3-8, 4-2, 5-1, 5-3, 6-1, 6-3, 6-9
UUT pattitioning, 3-1 _
UUT voltage, 4-5

Variable signature, 7-5
Verical scan rate, 4-203
Vertical sync, 4-180
Video cards, 4-180
Video control, 4-203
Video Control functional block, 4-203
example, 4-206
keystroke functional test, 4-208
programmed functional 1est, 4-216
stimulus programs and response files, 4-216
summary page, 4-229
testing and troubleshooting, 4-205
Video display controller, 4-177
VIDEQ_DATA stimulus program, 4-216, 4-220
VIDEO_DATA response filg, 4-222
VIDEO_FIL1 initialization program, 4-187, 4-200
used in other chapters, 4-216, 4-238
VIDEQ_FIL2 initialization program, 4-187, 4-201
VIDEO_FREQ stimulus program, 4-187, 4-190
used in other chapters, 4-216
VIDEQO_FREQ response file, 4-190
VIDEQ_INIT initiafization program, 4-187, 4-199
used in other chapters, 4-217, 4-239
Video Output functional block, 4-177
example, 4-180
keystroke functional test, 4-181.
programmed functional test, 4-186
stimulus programs and response files, 4-187

Index-16

Video Output functional block, (continusd)
summary page, 4-202 _
testing and troubleshooting, 4-177
VIDEO_OUT stimulus program, 4-187, 4-192
VIDEO_OUT response file, 4-193
Video RAM functional block, 4-231
example, 4-233
keystroke functional test, 4-233
programmed functional test, 4-238
stimulus programs and response files, 4-238
summary page, 4-242
testing and troubleshooting, 4-231
VIDEO_RDY stimulus program, 4-217, 4-223
used in other chapters, 4-238
VIDEQ_RDY response file, 4-224
VIDEQ_SCAN stimulus program, 4-187, 4-195
used in other chapters, 4-2186, 4-238
VIDEQ_SCAN response file, 4-196
Visual or acoustic characteristics, 4-380

Wait state, 4-331, 8-9

Watchdog timer, 4-8, 4-379, 8-9
Wildcard, 8-9

Window, 8-9

Wire list, 7-11

WRITE BLOCK command, 5-8
WRITE command, 5-8

Write control signals, 4-248

writepatt command, 3-20, 3-21, 4-381

Index-17

Index-18

